ﻻ يوجد ملخص باللغة العربية
The emergence of various exciton-related effects in transition metal dichalcogenides (TMDC) and their heterostructures has inspired a significant number of studies and brought forth several possible applications. Often, standard photoluminescence (PL) with microscale lateral resolution is utilized to identify and characterize these excitonic phenomena, including interlayer excitons (IEXs). We studied the local PL signatures of van der Waals heterobilayers composed of exfoliated monolayers of the (Mo,W)(S,Se)$_2$ TMDC family with high spatial resolution (down to 30 nm) using tip-enhanced photoluminescence (TEPL) with different orders (top/bottom) and on different substrates. We evidence that other PL signals may appear near the reported energy of the IEX transitions, possibly interfering in the interpretation of the results. While we can distinguish and confirm the presence of IEX-related PL in MoS$_2$-WS$_2$ and MoSe$_2$-WSe$_2$, we find no such feature in the MoS$_2$-WSe$_2$ heterobilayer in the spectral region of 1.7-1.4 eV, where the IEXs of this heterobilayer is often reported. We assign the extra signals to the PL of the individual monolayers, in which the exciton energy is altered by the local strains caused by the formation of blisters and nanobubbles, and the PL is extremely enhanced due to the decoupling of the layers. We prove that even a single nanobubble as small as 60 nm---hence not optically visible---can induce such a suspicious PL feature in the micro-PL spectrum of an otherwise flat heterobilayer.
Van der Waals heterobilayers based on 2D transition metal dichalcogenides have been recently shown to support robust and long-lived valley polarization for potential valleytronic applications. However, the role of the band structure and alignment of
Proximity effects are one of the pillars of exotic phenomena and technological applications of two dimensional materials. However, the interactions nature depends strongly on the materials involved, their crystalline symmetries, and interfacial prope
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra
We reveal by first-principles calculations that the interlayer binding in a twisted MoS2/MoTe2 heterobilayer decreases with increasing twist angle, due to the increase of the interlayer overlapping degree, a geometric quantity describing well the int
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$