ﻻ يوجد ملخص باللغة العربية
The magnetic phase diagram in the H-T coordinates has been determined for {sigma}-Fe68V32 from the ZFC/FC magnetization measurements. The re-entrant character of magnetism, going from paramagnetic through ferromagnetic to spin-glass (SG) states, has been evidenced. The SG phase is magnetically heterogeneous, because two sub phases can be identified i.e. with the strong (SG-SI) and the weak (SG-WI) irreversibility. The ireversibility, T_irr and the crossover, T_cros, temperatures were quantitatively analysed using the mean-field theory and {phi}_irr=1.6(2) and {phi}_cros=0.91(9) values were obtained. A qualitative agreement with the Gabay-Toulouse model was reached. The isothermal magnetization measurements point to a soft magnetic behaviour of the studied sample. The {gamma} critical exponent was determined with the Kouvel-Fisher approach yielding the value of {gamma}=1.0(1) in line with the mean-field theory.
In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization
A low-temperature magnetism was revealed in a series of sigma-Fe(100-x)Mo(x) alloys (x=45-53). Its characterization has been done using vibrating sample magnetometry, Mossbauer spectroscopy, and ac magnetic susceptibility. The magnetic ordering tempe
Systematic experimental (vibrating sample magnetometry) and theoretical (electronic structure calculations using charge and spin self-consistent Korringa-Kohn-Rostoker Green function method) studies were performed on a series of intermetallic sigma-p
Magnetic properties of a sigma-phase Fe60V40 intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-gla
A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurements were performed. Concerning the former field-cooled and zero-field-cooled M-c