ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Stream Compare and Contrast Network for Vertebral Compression Fracture Diagnosis

251   0   0.0 ( 0 )
 نشر من قبل Shixiang Feng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Differentiating Vertebral Compression Fractures (VCFs) associated with trauma and osteoporosis (benign VCFs) or those caused by metastatic cancer (malignant VCFs) are critically important for treatment decisions. So far, automatic VCFs diagnosis is solved in a two-step manner, i.e. first identify VCFs and then classify it into benign or malignant. In this paper, we explore to model VCFs diagnosis as a three-class classification problem, i.e. normal vertebrae, benign VCFs, and malignant VCFs. However, VCFs recognition and classification require very different features, and both tasks are characterized by high intra-class variation and high inter-class similarity. Moreover, the dataset is extremely class-imbalanced. To address the above challenges, we propose a novel Two-Stream Compare and Contrast Network (TSCCN) for VCFs diagnosis. This network consists of two streams, a recognition stream which learns to identify VCFs through comparing and contrasting between adjacent vertebra, and a classification stream which compares and contrasts between intra-class and inter-class to learn features for fine-grained classification. The two streams are integrated via a learnable weight control module which adaptively sets their contribution. The TSCCN is evaluated on a dataset consisting of 239 VCFs patients and achieves the average sensitivity and specificity of 92.56% and 96.29%, respectively.

قيم البحث

اقرأ أيضاً

An osteoporosis-related fracture occurs every three seconds worldwide, affecting one in three women and one in five men aged over 50. The early detection of at-risk patients facilitates effective and well-evidenced preventative interventions, reducin g the incidence of major osteoporotic fractures. In this study, we present an automatic system for identification of vertebral compression fractures on Computed Tomography images, which are often an undiagnosed precursor to major osteoporosis-related fractures. The system integrates a compact 3D representation of the spine, utilizing a Convolutional Neural Network (CNN) for spinal cord detection and a novel end-to-end sequence to sequence 3D architecture. We evaluate several model variants that exploit different representation and classification approaches and present a framework combining an ensemble of models that achieves state of the art results, validated on a large data set, with a patient-level fracture identification of 0.955 Area Under the Curve (AUC). The system proposed has the potential to support osteoporosis clinical management, improve treatment pathways, and to change the course of one of the most burdensome diseases of our generation.
Objective: The spinous process angle (SPA) is one of the essential parameters to denote three-dimensional (3-D) deformity of spine. We propose an automatic segmentation method based on Stacked Hourglass Network (SHN) to detect the spinous processes ( SP) on ultrasound (US) spine images and to measure the SPAs of clinical scoliotic subjects. Methods: The network was trained to detect vertebral SP and laminae as five landmarks on 1200 ultrasound transverse images and validated on 100 images. All the processed transverse images with highlighted SP and laminae were reconstructed into a 3D image volume, and the SPAs were measured on the projected coronal images. The trained network was tested on 400 images by calculating the percentage of correct keypoints (PCK); and the SPA measurements were evaluated on 50 scoliotic subjects by comparing the results from US images and radiographs. Results: The trained network achieved a high average PCK (86.8%) on the test datasets, particularly the PCK of SP detection was 90.3%. The SPAs measured from US and radiographic methods showed good correlation (r>0.85), and the mean absolute differences (MAD) between two modalities were 3.3{deg}, which was less than the clinical acceptance error (5{deg}). Conclusion: The vertebral features can be accurately segmented on US spine images using SHN, and the measurement results of SPA from US data was comparable to the gold standard from radiography.
We propose an auto-encoding network architecture for point clouds (PC) capable of extracting shape signatures without supervision. Building on this, we (i) design a loss function capable of modelling data variance on PCs which are unstructured, and ( ii) regularise the latent space as in a variational auto-encoder, both of which increase the auto-encoders descriptive capacity while making them probabilistic. Evaluating the reconstruction quality of our architectures, we employ them for detecting vertebral fractures without any supervision. By learning to efficiently reconstruct only healthy vertebrae, fractures are detected as anomalous reconstructions. Evaluating on a dataset containing $sim$1500 vertebrae, we achieve area-under-ROC curve of $>$75%, without using intensity-based features.
Compression is a standard procedure for making convolutional neural networks (CNNs) adhere to some specific computing resource constraints. However, searching for a compressed architecture typically involves a series of time-consuming training/valida tion experiments to determine a good compromise between network size and performance accuracy. To address this, we propose an image complexity-guided network compression technique for biomedical image segmentation. Given any resource constraints, our framework utilizes data complexity and network architecture to quickly estimate a compressed model which does not require network training. Specifically, we map the dataset complexity to the target network accuracy degradation caused by compression. Such mapping enables us to predict the final accuracy for different network sizes, based on the computed dataset complexity. Thus, one may choose a solution that meets both the network size and segmentation accuracy requirements. Finally, the mapping is used to determine the convolutional layer-wise multiplicative factor for generating a compressed network. We conduct experiments using 5 datasets, employing 3 commonly-used CNN architectures for biomedical image segmentation as representative networks. Our proposed framework is shown to be effective for generating compressed segmentation networks, retaining up to $approx 95%$ of the full-sized network segmentation accuracy, and at the same time, utilizing $approx 32x$ fewer network trainable weights (average reduction) of the full-sized networks.
We present an efficient finetuning methodology for neural-network filters which are applied as a postprocessing artifact-removal step in video coding pipelines. The fine-tuning is performed at encoder side to adapt the neural network to the specific content that is being encoded. In order to maximize the PSNR gain and minimize the bitrate overhead, we propose to finetune only the convolutional layers biases. The proposed method achieves convergence much faster than conventional finetuning approaches, making it suitable for practical applications. The weight-update can be included into the video bitstream generated by the existing video codecs. We show that our method achieves up to 9.7% average BD-rate gain when compared to the state-of-art Versatile Video Coding (VVC) standard codec on 7 test sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا