ﻻ يوجد ملخص باللغة العربية
Motivated by the recent development of time-resolved resonant-inelastic x-ray scattering (TRRIXS) in photoexcited antiferromagnetic Mott insulators, we numerically investigate momentum-dependent transient spin dynamics in a half-filled Hubbard model on a square lattice. After turning off a pumping photon pulse, the intensity of a dynamical spin structure factor temporally oscillates with frequencies determined by the energy of two magnons in the antiferromagnetic Mott insulator. We find an antiphase behavior in the oscillations between two orthogonal momentum directions, parallel and perpendicular to the electric field of a pump pulse. The phase difference comes from the $B_{1g}$ channel of the two-magnon excitation. Observing the antiphase oscillations will be a big challenge for TRRIXS experiments when their time resolution will be improved by more than an order of magnitude.
As an elementary particle the electron carries spin hbar/2 and charge e. When binding to the atomic nucleus it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies (e.g., s, p or d). Even if elect
Although the mechanism of superconductivity in the cuprates remains elusive, it is generally agreed that at the heart of the problem is the physics of doped Mott insulators. The cuprate parent compound has one unpaired electron per Cu site, and is pr
Motivated by the rich interplay among electronic correlation, spin-orbit coupling (SOC), crystal-field splitting, and geometric frustrations in the honeycomb-like lattice, we systematically investigated the electronic and magnetic properties of Li$_2
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is appro