ﻻ يوجد ملخص باللغة العربية
We prove that any strongly mixing action of a countable abelian group on a probability space has higher order mixing properties. This is achieved via introducing and utilizing $mathcal R$-limits, a notion of convergence which is based on the classical Ramsey Theorem. $mathcal R$-limits are intrinsically connected with a new combinatorial notion of largeness which is similar to but has stronger properties than the classical notions of uniform density one and IP$^*$. While the main goal of this paper is to establish a $textit{universal}$ property of strongly mixing actions of countable abelian groups, our results, when applied to $mathbb Z$-actions, offer a new way of dealing with strongly mixing transformations. In particular, we obtain several new characterizations of strong mixing for $mathbb Z$-actions, including a result which can be viewed as the analogue of the weak mixing of all orders property established by Furstenberg in the course of his proof of Szemeredis theorem. We also demonstrate the versatility of $mathcal R$-limits by obtaining new characterizations of higher order weak and mild mixing for actions of countable abelian groups.
We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenows in the (strong) positive. As a second main result, we give simple and complete characterizations of link diagr
We show that a topologically mixing $C^infty$ Anosov flow on a 3 dimensional compact manifold is exponential mixing with respect to any equilibrium measure with Holder potential.
The family of pairwise independently determined (PID) systems, i.e. those for which the independent joining is the only self joining with independent 2-marginals, is a class of systems for which the long standing open question by Rokhlin, of whether
We introduce random towers to study almost sure rates of correlation decay for random partially hyperbolic attractors. Using this framework, we obtain abstract results on almost sure exponential, stretched exponential and polynomial correlation decay
In ergodic theory, given sufficient conditions on the system, every weak mixing $mathbb{N}$-action is strong mixing along a density one subset of $mathbb{N}$. We ask if a similar statement holds in topological dynamics with density one replaced with