ترغب بنشر مسار تعليمي؟ اضغط هنا

SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentation

217   0   0.0 ( 0 )
 نشر من قبل Xiaoman Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic and accurate tumor segmentation on medical images is in high demand to assist physicians with diagnosis and treatment. However, it is difficult to obtain massive amounts of annotated training data required by the deep-learning models as the manual delineation process is often tedious and expertise required. Although self-supervised learning (SSL) scheme has been widely adopted to address this problem, most SSL methods focus only on global structure information, ignoring the key distinguishing features of tumor regions: local intensity variation and large size distribution. In this paper, we propose Scale-Aware Restoration (SAR), a SSL method for 3D tumor segmentation. Specifically, a novel proxy task, i.e. scale discrimination, is formulated to pre-train the 3D neural network combined with the self-restoration task. Thus, the pre-trained model learns multi-level local representations through multi-scale inputs. Moreover, an adversarial learning module is further introduced to learn modality invariant representations from multiple unlabeled source datasets. We demonstrate the effectiveness of our methods on two downstream tasks: i) Brain tumor segmentation, ii) Pancreas tumor segmentation. Compared with the state-of-the-art 3D SSL methods, our proposed approach can significantly improve the segmentation accuracy. Besides, we analyze its advantages from multiple perspectives such as data efficiency, performance, and convergence speed.



قيم البحث

اقرأ أيضاً

Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labor, time and reproducibility. Whil e deep learning based methods serve good baselines in 3D image segmentation tasks, small applicable patch size limits effective receptive field and degrades segmentation performance. In addition, Regions of interest (RoIs) localization from large whole volume 3D images serves as a preceding operation that brings about multiple benefits in terms of speed, target completeness, reduction of false positives. Distinct from sliding window or non-joint localization-segmentation based models, we propose a novel multitask framework referred to as 3D RoI-aware U-Net (3D RU-Net), for RoI localization and in-region segmentation where the two tasks share one backbone encoder network. With the region proposals from the encoder, we crop multi-level RoI in-region features from the encoder to form a GPU memory-efficient decoder for detailpreserving segmentation and therefore enlarged applicable volume size and effective receptive field. To effectively train the model, we designed a Dice formulated loss function for the global-to-local multi-task learning procedure. Based on the efficiency gains, we went on to ensemble models with different receptive fields to achieve even higher performance costing minor extra computational expensiveness. Extensive experiments were conducted on 64 cancerous cases with a four-fold cross-validation, and the results showed significant superiority in terms of accuracy and efficiency over conventional frameworks. In conclusion, the proposed method has a huge potential for extension to other 3D object segmentation tasks from medical images due to its inherent generalizability. The code for the proposed method is publicly available.
Deep learning has quickly become the weapon of choice for brain lesion segmentation. However, few existing algorithms pre-configure any biological context of their chosen segmentation tissues, and instead rely on the neural networks optimizer to deve lop such associations de novo. We present a novel method for applying deep neural networks to the problem of glioma tissue segmentation that takes into account the structured nature of gliomas - edematous tissue surrounding mutually-exclusive regions of enhancing and non-enhancing tumor. We trained multiple deep neural networks with a 3D U-Net architecture in a tree structure to create segmentations for edema, non-enhancing tumor, and enhancing tumor regions. Specifically, training was configured such that the whole tumor region including edema was predicted first, and its output segmentation was fed as input into separate models to predict enhancing and non-enhancing tumor. Our method was trained and evaluated on the publicly available BraTS dataset, achieving Dice scores of 0.882, 0.732, and 0.730 for whole tumor, enhancing tumor and tumor core respectively.
120 - Linqing Zhao , Jiwen Lu , Jie Zhou 2021
In this paper, we propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation. Existing fusion-based methods achieve remarkable performances by integrating information from multiple modalities. However, they heavily rely on the correspondence between 2D pixels and 3D points by projection and can only perform the information fusion in a fixed manner, and thus their performances cannot be easily migrated to a more realistic scenario where the collected data often lack strict pair-wise features for prediction. To address this, we employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds and utilize them to guide the fusion of two modalities to further exploit complementary information. Specifically, we employ a geometric similarity module (GSM) to directly compare the spatial coordinate distributions of pair-wise 3D neighborhoods, and a contextual similarity module (CSM) to aggregate and compare spatial contextual information of corresponding central points. The two proposed modules can effectively measure how much image features can help predictions, enabling the network to adaptively adjust the contributions of two modalities to the final prediction of each point. Experimental results on the ScanNetV2 benchmark demonstrate that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
We propose a novel, simple and effective method to integrate lesion prior and a 3D U-Net for improving brain tumor segmentation. First, we utilize the ground-truth brain tumor lesions from a group of patients to generate the heatmaps of different typ es of lesions. These heatmaps are used to create the volume-of-interest (VOI) map which contains prior information about brain tumor lesions. The VOI map is then integrated with the multimodal MR images and input to a 3D U-Net for segmentation. The proposed method is evaluated on a public benchmark dataset, and the experimental results show that the proposed feature fusion method achieves an improvement over the baseline methods. In addition, our proposed method also achieves a competitive performance compared to state-of-the-art methods.
78 - Zhihua Liu , Lei Tong , Long Chen 2020
Automated segmentation of brain glioma plays an active role in diagnosis decision, progression monitoring and surgery planning. Based on deep neural networks, previous studies have shown promising technologies for brain glioma segmentation. However, these approaches lack powerful strategies to incorporate contextual information of tumor cells and their surrounding, which has been proven as a fundamental cue to deal with local ambiguity. In this work, we propose a novel approach named Context-Aware Network (CANet) for brain glioma segmentation. CANet captures high dimensional and discriminative features with contexts from both the convolutional space and feature interaction graphs. We further propose context guided attentive conditional random fields which can selectively aggregate features. We evaluate our method using publicly accessible brain glioma segmentation datasets BRATS2017, BRATS2018 and BRATS2019. The experimental results show that the proposed algorithm has better or competitive performance against several State-of-The-Art approaches under different segmentation metrics on the training and validation sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا