ترغب بنشر مسار تعليمي؟ اضغط هنا

RackSched: A Microsecond-Scale Scheduler for Rack-Scale Computers (Technical Report)

586   0   0.0 ( 0 )
 نشر من قبل Hang Zhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-latency online services have strict Service Level Objectives (SLOs) that require datacenter systems to support high throughput at microsecond-scale tail latency. Dataplane operating systems have been designed to scale up multi-core servers with minimal overhead for such SLOs. However, as application demands continue to increase, scaling up is not enough, and serving larger demands requires these systems to scale out to multiple servers in a rack. We present RackSched, the first rack-level microsecond-scale scheduler that provides the abstraction of a rack-scale computer (i.e., a huge server with hundreds to thousands of cores) to an external service with network-system co-design. The core of RackSched is a two-layer scheduling framework that integrates inter-server scheduling in the top-of-rack (ToR) switch with intra-server scheduling in each server. We use a combination of analytical results and simulations to show that it provides near-optimal performance as centralized scheduling policies, and is robust for both low-dispersion and high-dispersion workloads. We design a custom switch data plane for the inter-server scheduler, which realizes power-of-k-choices, ensures request affinity, and tracks server loads accurately and efficiently. We implement a RackSched prototype on a cluster of commodity servers connected by a Barefoot Tofino switch. End-to-end experiments on a twelve-server testbed show that RackSched improves the throughput by up to 1.44x, and scales out the throughput near linearly, while maintaining the same tail latency as one server until the system is saturated.

قيم البحث

اقرأ أيضاً

Internet supercomputing is an approach to solving partitionable, computation-intensive problems by harnessing the power of a vast number of interconnected computers. For the problem of using network supercomputing to perform a large collection of ind ependent tasks, prior work introduced a decentralized approach and provided randomized synchronous algorithms that perform all tasks correctly with high probability, while dealing with misbehaving or crash-prone processors. The main weaknesses of existing algorithms is that they assume either that the emph{average} probability of a non-crashed processor returning incorrect results is inferior to $frac{1}{2}$, or that the probability of returning incorrect results is known to emph{each} processor. Here we present a randomized synchronous distributed algorithm that tightly estimates the probability of each processor returning correct results. Starting with the set $P$ of $n$ processors, let $F$ be the set of processors that crash. Our algorithm estimates the probability $p_i$ of returning a correct result for each processor $i in P-F$, making the estimates available to all these processors. The estimation is based on the $(epsilon, delta)$-approximation, where each estimated probability $tilde{p_i}$ of $p_i$ obeys the bound ${sf Pr}[p_i(1-epsilon) leq tilde{p_i} leq p_i(1+epsilon)] > 1 - delta$, for any constants $delta >0$ and $epsilon >0$ chosen by the user. An important aspect of this algorithm is that each processor terminates without global coordination. We assess the efficiency of the algorithm in three adversarial models as follows. For the model where the number of non-crashed processors $|P-F|$ is linearly bounded the time complexity $T(n)$ of the algorithm is $Theta(log{n})$, work complexity $W(n)$ is $Theta(nlog{n})$, and message complexity $M(n)$ is $Theta(nlog^2n)$.
In todays enterprise storage systems, supported data services such as snapshot delete or drive rebuild can cause tremendous performance interference if executed inline along with heavy foreground IO, often leading to missing SLOs (Service Level Objec tives). Typical storage system applications such as web or VDI (Virtual Desktop Infrastructure) follow a repetitive high/low workload pattern that can be learned and forecasted. We propose a priority-based background scheduler that learns this repetitive pattern and allows storage systems to maintain peak performance and in turn meet service level objectives (SLOs) while supporting a number of data services. When foreground IO demand intensifies, system resources are dedicated to service foreground IO requests and any background processing that can be deferred are recorded to be processed in future idle cycles as long as forecast shows that storage pool has remaining capacity. The smart background scheduler adopts a resource partitioning model that allows both foreground and background IO to execute together as long as foreground IOs are not impacted where the scheduler harness any free cycle to clear background debt. Using traces from VDI application, we show how our technique surpasses a method that statically limit the deferred background debt and improve SLO violations from 54.6% when using a fixed background debt watermark to merely a 6.2% if dynamically set by our smart background scheduler.
High performance rack-scale offerings package disaggregated pools of compute, memory and storage hardware in a single rack to run diverse workloads with varying requirements, including applications that need low and predictable latency. The intra-rac k network is typically high speed Ethernet, which can suffer from congestion leading to packet drops and may not satisfy the stringent tail latency requirements for some workloads (including remote memory/storage accesses). In this paper, we design a Predictable Low Latency(PL2) network architecture for rack-scale systems with Ethernet as interconnecting fabric. PL2 leverages programmable Ethernet switches to carefully schedule packets such that they incur no loss with NIC and switch queues maintained at small, near-zero levels. In our 100 Gbps rack-prototype, PL2 keeps 99th-percentile memcached RPC latencies under 60us even when the RPCs compete with extreme offered-loads of 400%, without losing traffic. Network transfers for a machine learning training task complete 30% faster than a receiver-driven scheme implementation modeled after Homa (222ms vs 321ms 99%ile latency per iteration).
Scientific workflows are a cornerstone of modern scientific computing. They are used to describe complex computational applications that require efficient and robust management of large volumes of data, which are typically stored/processed at heterog eneous, distributed resources. The workflow research and development community has employed a number of methods for the quantitative evaluation of existing and novel workflow algorithms and systems. In particular, a common approach is to simulate workflow executions. In previous work, we have presented a collection of tools that have been used for aiding research and development activities in the Pegasus project, and that have been adopted by others for conducting workflow research. Despite their popularity, there are several shortcomings that prevent easy adoption, maintenance, and consistency with the evolving structures and computational requirements of production workflows. In this work, we present WorkflowHub, a community framework that provides a collection of tools for analyzing workflow execution traces, producing realistic synthetic workflow traces, and simulating workflow executions. We demonstrate the realism of the generated synthetic traces by comparing simulated executions of these traces with actual workflow executions. We also contrast these results with those obtained when using the previously available collection of tools. We find that our framework not only can be used to generate representative synthetic workflow traces (i.e., with workflow structures and task characteristics distributions that resembles those in traces obtained from real-world workflow executions), but can also generate representative workflow traces at larger scales than that of available workflow traces.
Internet supercomputing is an approach to solving partitionable, computation-intensive problems by harnessing the power of a vast number of interconnected computers. This paper presents a new algorithm for the problem of using network supercomputing to perform a large collection of independent tasks, while dealing with undependable processors. The adversary may cause the processors to return bogus results for tasks with certain probabilities, and may cause a subset $F$ of the initial set of processors $P$ to crash. The adversary is constrained in two ways. First, for the set of non-crashed processors $P-F$, the emph{average} probability of a processor returning a bogus result is inferior to $frac{1}{2}$. Second, the adversary may crash a subset of processors $F$, provided the size of $P-F$ is bounded from below. We consider two models: the first bounds the size of $P-F$ by a fractional polynomial, the second bounds this size by a poly-logarithm. Both models yield adversaries that are much stronger than previously studied. Our randomized synchronous algorithm is formulated for $n$ processors and $t$ tasks, with $nle t$, where depending on the number of crashes each live processor is able to terminate dynamically with the knowledge that the problem is solved with high probability. For the adversary constrained by a fractional polynomial, the round complexity of the algorithm is $O(frac{t}{n^varepsilon}log{n}log{log{n}})$, its work is $O(tlog{n} log{log{n}})$ and message complexity is $O(nlog{n}log{log{n}})$. For the poly-log constrained adversary, the round complexity is $O(t)$, work is $O(t n^{varepsilon})$, %$O(t , poly log{n})$, and message complexity is $O(n^{1+varepsilon})$ %$O(n , poly log{n})$. All bounds are shown to hold with high probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا