ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling in internally heated convection: a unifying theory

67   0   0.0 ( 0 )
 نشر من قبل Qi Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We offer a unifying theory for turbulent purely internally heated convection, generalizing the unifying theories of Grossmann and Lohse (2000, 2001) for Rayleigh--Benard turbulence and of Shishkina, Grossmann and Lohse (2016) for turbulent horizontal convection, which are both based on the splitting of the kinetic and thermal dissipation rates in respective boundary and bulk contributions. We obtain the mean temperature of the system and the Reynolds number (which are the response parameters) as function of the control parameters, namely the internal thermal driving strength (called, when nondimensionalized, the Rayleigh--Roberts number) and the Prandtl number. The results of the theory are consistent with our direct numerical simulations.

قيم البحث

اقرأ أيضاً

An experimental and numerical smoothed particle hydrodynamics (SPH) analysis was performed for the convective flow arising from a horizontal, thin cylindrical heat source enclosed in a glycerin-filled, slender enclosure at low Rayleigh numbers ($1.18 leq {rm Ra}leq 242$). Both the experiments and the SPH calculations were performed for positive ($0.1leqDelta Tleq 10$ K) and negative ($-10leqDelta Tleq -0.1$ K) temperature differences between the source and the surrounding fluid. In all cases a pair of steady, counter-rotating vortices is formed, accompanied by a plume of vertically ascending flow just above the source for $Delta T>0$ and a vertically descending flow just below the source for $Delta T<0$. The maximum flow velocities always occur within the ascending/descending plumes. The SPH predictions are found to match the experimental observations acceptably well with root-mean-square errors in the velocity profiles of the order of $sim 10^{-5}$ m s$^{-1}$. The fact that the SPH method is able to reveal the detailed features of the flow phenomenon demonstrates the correctness of the approach.
Convection over a wavy heated bottom wall in the air flow has been studied in experiments with the Rayleigh number $sim 10^8$. It is shown that the mean temperature gradient in the flow core inside a large-scale circulation is directed upward, that c orresponds to the stably stratified flow. In the experiments with a wavy heated bottom wall, we detect large-scale standing internal gravity waves excited in the regions with the stably stratified flow. The wavelength and the period of these waves are much larger than the turbulent spatial and time scales, respectively. In particular, the frequencies of the observed large-scale waves vary from 0.006 Hz to 0.07 Hz, while the turbulent time in the integral scale is about 0.5 s. The measured spectra of these waves contains several localized maxima, that implies an existence of waveguide resonators for the large-scale standing internal gravity waves. For comparisons, experiments with convection over a smooth plane bottom wall at the same mean temperature difference between bottom and upper walls have been also conducted. In these experiments various locations with a stably stratified flow are also found and the large-scale standing internal gravity waves are observed in these regions.
Direct numerical simulations are employed to reveal three distinctly different flow regions in rotating spherical Rayleigh-Benard convection. In the low-latitude region $mathrm{I}$ vertical (parallel to the axis of rotation) convective columns are ge nerated between the hot inner and the cold outer sphere. The mid-latitude region $mathrm{II}$ is dominated by vertically aligned convective columns formed between the Northern and Southern hemispheres of the outer sphere. The diffusion-free scaling, which indicates bulk-dominated convection, originates from this mid-latitude region. In the equator region $mathrm{III}$ the vortices are affected by the outer spherical boundary and are much shorter than in region $mathrm{II}$. Thermally driven turbulence with background rotation in spherical Rayleigh-Benard convection is found to be characterized by three distinctly different flow regions. The diffusion-free scaling, which indicates the heat transfer is bulk-dominated, originates from the mid-latitude region in which vertically aligned vortices are stretched between the Northern and Southern hemispheres of the outer sphere. These results show that the flow physics in rotating convection are qualitatively different in planar and spherical geometries. This finding underlines that it is crucial to study convection in spherical geometries to better understand geophysical and astrophysical flow phenomena.
If a fluid flow is driven by a weak Gaussian random force, the nonlinearity in the Navier-Stokes equations is negligibly small and the resulting velocity field obeys Gaussian statistics. Nonlinear effects become important as the driving becomes stron ger and a transition occurs to turbulence with anomalous scaling of velocity increments and derivatives. This process has been described by V. Yakhot and D. A. Donzis, Phys. Rev. Lett. 119, 044501 (2017) for homogeneous and isotropic turbulence (HIT). In more realistic flows driven by complex physical phenomena, such as instabilities and nonlocal forces, the initial state itself, and the transition to turbulence from that initial state, are much more complex. In this paper, we discuss the Reynolds-number-dependence of moments of the kinetic energy dissipation rate of orders 2 and 3 obtained in the bulk of thermal convection in the Rayleigh-B{e}nard system. The data are obtained from three-dimensional spectral element direct numerical simulations in a cell with square cross section and aspect ratio 25 by A. Pandey et al., Nat. Commun. 9, 2118 (2018). Different Reynolds numbers $1 lesssim {rm Re}_{ell} lesssim 1000$ which are based on the thickness of the bulk region $ell$ and the corresponding root-mean-square velocity are obtained by varying the Prandtl number Pr from 0.005 to 100 at a fixed Rayleigh number ${rm Ra}=10^5$. A few specific features of the data agree with the theory but the normalized moments of the kinetic energy dissipation rate, ${cal E}_n$, show a non-monotonic dependence for small Reynolds numbers before obeying the algebraic scaling prediction for the turbulent state. Implications and reasons for this behavior are discussed.
We present high-precision experimental and numerical studies of the Nusselt number $Nu$ as functions of the Rayleigh number $Ra$ in geostrophic rotating convection with domain aspect ratio ${Gamma}$ varying from 0.4 to 3.8 and the Ekman number Ek fro m $2.0{times}10^{-7}$ to $2.7{times}10^{-5}$. The heat-transport data $Nu(Ra)$ reveal a gradual transition from buoyancy-dominated to geostrophic convection at large $Ek$, whereas the transition becomes sharp with decreasing $Ek$. We determine the power-law scaling of $Nu{sim}Ra^{gamma}$, and show that the boundary flows give rise to pronounced enhancement of $Nu$ in a broad range of the geostrophic regime, leading to reduction of the scaling exponent ${gamma}$ in small ${Gamma}$ cells. The present work provides new insight into the heat-transport scaling in geostrophic convection and may explain the discrepancies observed in previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا