ﻻ يوجد ملخص باللغة العربية
Peculiar velocities of type Ia supernova (SNIa) host galaxies affect the dark-energy parameter constraints in a small but very specific way: the parameters are biased in a single direction in parameter space that is a-priori knowable for a given SNIa dataset. We demonstrate the latter fact with a combination of inference from a cosmological N-body simulation with overwhelming statistics applied to the Pantheon SNIa data set, then confirm it by simple quantitative arguments. We quantify small modifications to the current analyses that would ensure that the effect of cosmological parameters is essentially guaranteed to be negligible.
We show that peculiar velocities of Type Ia supernovae can be used to derive constraints on the sum of neutrino masses, $Sigma m_{ u}$, and dark energy equation of state, $w = w_0+w_a(1-a)$, from measurements of the magnitude-redshift relation, compl
Type Ia Supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift ($z$) of the SNe Ia have to be determined. The uncertainty on $z$ includes an unknown peculiar
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first t
Aims. We investigate the degree of improvement in dark energy constraints that can be achieved by extending Type Ia Supernova (SN Ia) samples to redshifts z > 1.5 with the Hubble Space Telescope (HST), particularly in the ongoing CANDELS and CLASH mu
We re-examine the contentious question of constraints on anisotropic expansion from Type Ia supernovae (SNIa) in the light of a novel determination of peculiar velocities, which are crucial to test isotropy with supernovae out to distances $lesssim 2