ترغب بنشر مسار تعليمي؟ اضغط هنا

BiPointNet: Binary Neural Network for Point Clouds

401   0   0.0 ( 0 )
 نشر من قبل Haotong Qin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To alleviate the resource constraint for real-time point cloud applications that run on edge devices, in this paper we present BiPointNet, the first model binarization approach for efficient deep learning on point clouds. We discover that the immense performance drop of binarized models for point clouds mainly stems from two challenges: aggregation-induced feature homogenization that leads to a degradation of information entropy, and scale distortion that hinders optimization and invalidates scale-sensitive structures. With theoretical justifications and in-depth analysis, our BiPointNet introduces Entropy-Maximizing Aggregation (EMA) to modulate the distribution before aggregation for the maximum information entropy, and Layer-wise Scale Recovery (LSR) to efficiently restore feature representation capacity. Extensive experiments show that BiPointNet outperforms existing binarization methods by convincing margins, at the level even comparable with the full precision counterpart. We highlight that our techniques are generic, guaranteeing significant improvements on various fundamental tasks and mainstream backbones. Moreover, BiPointNet gives an impressive 14.7x speedup and 18.9x storage saving on real-world resource-constrained devices.



قيم البحث

اقرأ أيضاً

How can we edit or transform the geometric or color property of a point cloud? In this study, we propose a neural style transfer method for point clouds which allows us to transfer the style of geometry or color from one point cloud either independen tly or simultaneously to another. This transfer is achieved by manipulating the content representations and Gram-based style representations extracted from a pre-trained PointNet-based classification network for colored point clouds. As Gram-based style representation is invariant to the number or the order of points, the same method can be extended to transfer the style extracted from an image to the color expression of a point cloud by merely treating the image as a set of pixels. Experimental results demonstrate the capability of the proposed method for transferring style from either an image or a point cloud to another point cloud of a single object or even an indoor scene.
Point clouds are a popular representation for 3D shapes. However, they encode a particular sampling without accounting for shape priors or non-local information. We advocate for the use of a hierarchical Gaussian mixture model (hGMM), which is a comp act, adaptive and lightweight representation that probabilistically defines the underlying 3D surface. We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class, and also coincide with the input point cloud. PointGMM is trained over a collection of shapes to learn a class-specific prior. The hierarchical representation has two main advantages: (i) coarse-to-fine learning, which avoids converging to poor local-minima; and (ii) (an unsupervised) consistent partitioning of the input shape. We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistent interpolations between existing shapes, as well as synthesizing novel shapes. We also present a novel framework for rigid registration using PointGMM, that learns to disentangle orientation from structure of an input shape.
Binary Neural Network (BNN) shows its predominance in reducing the complexity of deep neural networks. However, it suffers severe performance degradation. One of the major impediments is the large quantization error between the full-precision weight vector and its binary vector. Previous works focus on compensating for the norm gap while leaving the angular bias hardly touched. In this paper, for the first time, we explore the influence of angular bias on the quantization error and then introduce a Rotated Binary Neural Network (RBNN), which considers the angle alignment between the full-precision weight vector and its binarized version. At the beginning of each training epoch, we propose to rotate the full-precision weight vector to its binary vector to reduce the angular bias. To avoid the high complexity of learning a large rotation matrix, we further introduce a bi-rotation formulation that learns two smaller rotation matrices. In the training stage, we devise an adjustable rotated weight vector for binarization to escape the potential local optimum. Our rotation leads to around 50% weight flips which maximize the information gain. Finally, we propose a training-aware approximation of the sign function for the gradient backward. Experiments on CIFAR-10 and ImageNet demonstrate the superiorities of RBNN over many state-of-the-arts. Our source code, experimental settings, training logs and binary models are available at https://github.com/lmbxmu/RBNN.
Convolutional Neural Networks (CNNs) have emerged as a powerful strategy for most object detection tasks on 2D images. However, their power has not been fully realised for detecting 3D objects in point clouds directly without converting them to regul ar grids. Existing state-of-art 3D object detection methods aim to recognize 3D objects individually without exploiting their relationships during learning or inference. In this paper, we first propose a strategy that associates the predictions of direction vectors and pseudo geometric centers together leading to a win-win solution for 3D bounding box candidates regression. Secondly, we propose point attention pooling to extract uniform appearance features for each 3D object proposal, benefiting from the learned direction features, semantic features and spatial coordinates of the object points. Finally, the appearance features are used together with the position features to build 3D object-object relationship graphs for all proposals to model their co-existence. We explore the effect of relation graphs on proposals appearance features enhancement under supervised and unsupervised settings. The proposed relation graph network consists of a 3D object proposal generation module and a 3D relation module, makes it an end-to-end trainable network for detecting 3D object in point clouds. Experiments on challenging benchmarks ( SunRGB-Dand ScanNet datasets ) of 3D point clouds show that our algorithm can perform better than the existing state-of-the-art methods.
101 - Zihao Yan , Zimu Yi , Ruizhen Hu 2021
Rigid registration of partial observations is a fundamental problem in various applied fields. In computer graphics, special attention has been given to the registration between two partial point clouds generated by scanning devices. State-of-the-art registration techniques still struggle when the overlap region between the two point clouds is small, and completely fail if there is no overlap between the scan pairs. In this paper, we present a learning-based technique that alleviates this problem, and allows registration between point clouds, presented in arbitrary poses, and having little or even no overlap, a setting that has been referred to as tele-registration. Our technique is based on a novel neural network design that learns a prior of a class of shapes and can complete a partial shape. The key idea is combining the registration and completion tasks in a way that reinforces each other. In particular, we simultaneously train the registration network and completion network using two coupled flows, one that register-and-complete, and one that complete-and-register, and encourage the two flows to produce a consistent result. We show that, compared with each separate flow, this two-flow training leads to robust and reliable tele-registration, and hence to a better point cloud prediction that completes the registered scans. It is also worth mentioning that each of the components in our neural network outperforms state-of-the-art methods in both completion and registration. We further analyze our network with several ablation studies and demonstrate its performance on a large number of partial point clouds, both synthetic and real-world, that have only small or no overlap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا