ﻻ يوجد ملخص باللغة العربية
We propose a new model for the joint evolution of the European inflation rate, the European Central Bank official interest rate and the short-term interest rate, in a stochastic, continuous time setting. We derive the valuation equation for a contingent claim and show that it has a unique solution. The contingent claim payoff may depend on all three economic factors of the model and the discount factor is allowed to include inflation. Taking as a benchmark the model of Ho, H.W., Huang, H.H. and Yildirim, Y., Affine model of inflation-indexed derivatives and inflation risk premium, (European Journal of Operational Researc, 2014), we show that our model performs better on market data from 2008 to 2015. Our model is not an affine model. Although in some special cases the solution of the valuation equation might admit a closed form, in general it has to be solved numerically. This can be done efficiently by the algorithm that we provide. Our model uses many fewer parameters than the benchmark model, which partly compensates the higher complexity of the numerical procedure and also suggests that our model describes the behaviour of the economic factors more closely.
A relation between interest rates and inflation is presented using a two component economic model and a simple general principle. Preliminary results indicate a remarkable similarity to classical economic theories, in particular that of Wicksell.
A term structure model in which the short rate is zero is developed as a candidate for a theory of cryptocurrency interest rates. The price processes of crypto discount bonds are worked out, along with expressions for the instantaneous forward rates
A minimal model of a market of myopic non-cooperative agents who trade bilaterally with random bids reproduces qualitative features of short-term electric power markets, such as those in California and New England. Each agent knows its own budget and
With model uncertainty characterized by a convex, possibly non-dominated set of probability measures, the agent minimizes the cost of hedging a path dependent contingent claim with given expected success ratio, in a discrete-time, semi-static market
We propose a class of discrete-time stochastic models for the pricing of inflation-linked assets. The paper begins with an axiomatic scheme for asset pricing and interest rate theory in a discrete-time setting. The first axiom introduces a risk-free