ﻻ يوجد ملخص باللغة العربية
For noisy intermediate-scale quantum (NISQ) devices only a moderate number of qubits with a limited coherence is available thus enabling only shallow circuits and a few time evolution steps in the currently performed quantum computations. Here, we present how to bypass this challenge in practical molecular chemistry simulations on NISQ devices by employing a classical-quantum hybrid algorithm allowing us to produce a sparse Hamiltonian which contains only $mathcal{O}(n^2)$ terms in a Gaussian orbital basis when compared to the $mathcal{O}(n^4)$ terms of a standard Hamiltonian, where $n$ is the number of orbitals in the system. Classical part of this hybrid entails parameterization of the sparse, fictitious Hamiltonian in such a way that it recovers the self-energy of the original molecular system. Quantum machine then uses this fictitious Hamiltonian to calculate the self-energy of the system. We show that the developed hybrid algorithm yields very good total energies for small molecular test cases while reducing the depth of the quantum circuit by at least an order of magnitude when compared with simulations involving a full Hamiltonian.
The quantum computation of electronic energies can break the curse of dimensionality that plagues many-particle quantum mechanics. It is for this reason that a universal quantum computer has the potential to fundamentally change computational chemist
Boson sampling (BS) is a multimode linear optical problem that is expected to be intractable on classical computers. It was recently suggested that molecular vibronic spectroscopy (MVS) is computationally as complex as BS. In this review, we discuss
We study numerically the effects of measurements on dynamical localization in the kicked rotator model simulated on a quantum computer. Contrary to the previous studies, which showed that measurements induce a diffusive probability spreading, our res
Considering the large-scale quantum computer, it is important to know how much quantum computational resources is necessary precisely and quickly. Unfortunately the previous methods so far cannot support a large-scale quantum computing practically an
A quantum chemistry study of the first singlet (S1) and triplet (T1) excited states of phenylsulfonyl-carbazole compounds, proposed as useful thermally activated delayed fluorescence (TADF) emitters for organic light emitting diode (OLED) application