ﻻ يوجد ملخص باللغة العربية
An important representation of the general-type fundamental solutions of the canonical systems corresponding to matrix string equations is established using linear similarity of a certain class of Volterra operators to the squared integration. Explicit fundamental solutions of these canonical systems are also constructed via the GBDT version of Darboux transformation. Examples and applications to dynamical canonical systems are given. Explicit solutions of the dynamical canonical systems are constructed as well. Three appendices are dedicated to the Weyl--Titchmarsh theory for canonical systems, transformation of a subclass of canonical systems into matrix string equations (and of a smaller subclass of canonical systems into matrix Schrodinger equations), and a linear similarity problem for Volterra operators.
We consider canonical systems (with $2ptimes 2p$ Hamiltonians $H(x)geq 0$), which correspond to matrix string equations. Direct and inverse problems are solved in terms of Titchmarsh--Weyl and spectral matrix functions and related $S$-nodes. Procedures for solving inverse problems are given.
We obtain high energy asymptotics of Titchmarsh-Weyl functions of the generalised canonical systems generalising in this way a seminal Gesztesy-Simon result. The matrix valued analog of the amplitude function satisfies in this case an interesting new
We study matrix roots with certain commutation properties and their application to the explicit construction of Darboux matrices in the framework of the GBDT version of Backlund-Darboux transformation. The approach is demonstrated on the important ca
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equatio
We introduce matrix coupled (local and nonlocal) dispersionless equations, construct wide classes of explicit multipole solutions, give explicit expressions for the corresponding Darboux and wave matrix valued functions and consider their asymptotics