ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Short Blocklength Sphere Shaping and Nonlinearity Compensation in WDM Systems

239   0   0.0 ( 0 )
 نشر من قبل Abdelkerim Amari
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In optical communication systems, short blocklength probabilistic enumerative sphere shaping (ESS) provides both linear shaping gain and nonlinear tolerance. In this work, we investigate the performance and complexity of ESS in comparison with fiber nonlinearity compensation via digital back propagation (DBP) with different steps per span. We evaluate the impact of the shaping blocklength in terms of nonlinear tolerance and also consider the case of ESS with a Volterra-based nonlinear equalizer (VNLE), which provides lower complexity than DBP. In single-channel transmission, ESS with VNLE achieves similar performance in terms of finite length bit-metric decoding rate to uniform signaling with one step per span DBP. In the context of a dense wavelength-division multiplexing (WDM) transmission system, we show that ESS outperforms uniform signaling with DBP for different step sizes.

قيم البحث

اقرأ أيضاً

We propose multi-dimensional short blocklength probabilistic shaping to increase the nonlinear tolerance gain in digital subcarrier multiplexing transmission systems and demonstrate an improvement in performance compared to lower dimensional formats.
Achievable information rates (AIRs) of wideband optical communication systems using ~40 nm (~5 THz) EDFA and ~100 nm (~12.5 THz) distributed Raman amplification are estimated based on a first-order perturbation analysis. The AIRs of each individual c hannel have been evaluated for DP-64QAM, DP-256QAM, and DP-1024QAM modulation formats. The impact of full-field nonlinear compensation (FF-NLC) and probabilistically shaped constellations using a Maxwell-Boltzmann distribution were studied and compared to electronic dispersion compensation. It is found that a probabilistically shaped DP-1024QAM constellation combined with FF-NLC yields AIRs of ~75 Tbit/s for the EDFA scheme and ~223 Tbit/s for the Raman amplification scheme over 2000 km standard single mode fibre transmission.
Probabilistic shaping based on constant composition distribution matching (CCDM) has received considerable attention as a way to increase the capacity of fiber optical communication systems. CCDM suffers from significant rate loss at short blocklengt hs and requires long blocklengths to achieve high shaping gain, which makes its implementation very challenging. In this paper, we propose to use enumerative sphere shaping (ESS) and investigate its performance for the nonlinear fiber optical channel. ESS has lower rate loss than CCDM at the same shaping rate, which makes it a suitable candidate to be implemented in real-time high-speed optical systems. In this paper, we first show that finite blocklength ESS and CCDM exhibit higher effective signal-to-noise ratio than their infinite blocklength counterparts. These results show that for the nonlinear fiber optical channel, large blocklengths should be avoided. We then show that for a 400 Gb/s dual-polarization 64-QAM WDM transmission system, ESS with short blocklengths outperforms both uniform signaling and CCDM. Gains in terms of both bit-metric decoding rate and bit-error rate are presented. ESS with a blocklength of 200 is shown to provide an extension reach of about 200 km in comparison with CCDM with the same blocklength. The obtained reach increase of ESS with a blocklength of 200 over uniform signaling is approximately 450 km (approximately 19%)
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to tra ck the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2x2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
In this paper, probabilistic shaping is numerically and experimentally investigated for increasing the transmission reach of wavelength division multiplexed (WDM) optical communication system employing quadrature amplitude modulation (QAM). An optimi zed probability mass function (PMF) of the QAM symbols is first found from a modified Blahut-Arimoto algorithm for the optical channel. A turbo coded bit interleaved coded modulation system is then applied, which relies on many-to-one labeling to achieve the desired PMF, thereby achieving shaping gain. Pilot symbols at rate at most 2% are used for synchronization and equalization, making it possible to receive input constellations as large as 1024QAM. The system is evaluated experimentally on a 10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t. standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at 5.46 bits/symbol. It is shown that rate adaptation does not require changing of the modulation format. The performance of the proposed 1024QAM shaped system is validated on all 5 channels of the WDM signal for selected distances and rates. Finally, it was shown via EXIT charts and BER analysis that iterative demapping, while generally beneficial to the system, is not a requirement for achieving the shaping gain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا