ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background

69   0   0.0 ( 0 )
 نشر من قبل Daniel Kresse
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Kresse




اسأل ChatGPT حول البحث

The diffuse cosmic supernova neutrino background (DSNB) is observational target of the gadolinium-loaded Super-Kamiokande (SK) detector and the forthcoming JUNO and Hyper-Kamiokande detectors. Current predictions are hampered by our still incomplete understanding of the supernova (SN) explosion mechanism and of the neutron star (NS) equation of state and maximum mass. In our comprehensive study we revisit this problem on grounds of the landscapes of successful and failed SN explosions obtained by Sukhbold et al. and Ertl et al. with parametrized one-dimensional neutrino engines for large sets of single-star and helium-star progenitors, with the latter serving as proxy of binary evolution effects. Besides considering engines of different strengths, leading to different fractions of failed SNe with black-hole (BH) formation, we also vary the NS mass limit, the spectral shape of the neutrino emission, and include contributions from poorly understood alternative NS-formation channels such as accretion-induced or merger-induced collapse events. Since the neutrino signals of our large model sets are approximate, we calibrate the associated degrees of freedom by using state-of-the-art simulations of proto-neutron star cooling. Our predictions are higher than other recent ones because of a large fraction of failed SNe with long delay to BH formation. Our best-guess model predicts a DSNB electron-antineutrino-flux of 28.8^{+24.6}_{-10.9} cm^{-2}s^{-1} with 6.0^{+5.1}_{-2.1} cm^{-2}s^{-1} in the favorable measurement interval of [10,30] MeV, and 1.3^{+1.1}_{-0.4} cm^{-2}s^{-1} with electron-antineutrino energies > 17.3 MeV, which is roughly a factor of two below the current SK limit. The uncertainty range is dominated by the still insufficiently constrained cosmic rate of stellar core-collapse events.

قيم البحث

اقرأ أيضاً

The Diffuse Supernova Neutrino Background (DSNB) in the MeV regime represents the cumulative cosmic neutrino emission, predominantly due to core collapse supernovae. We estimate the DSNB flux for different Star Formation Rate Density (SFRD) models. W e find that the DSNB flux estimated using the SFRD derived from Fermi-LAT Collaboration et al. (2018) is significantly higher ($approx$ 32$%$) relative to the flux estimated using the SFRD from Madau & Fragos (2017). This depicts the sensitivity between the DSNB flux and the SFRD estimates which shows that future detection of the DSNB can be used as a valuable tool to constrain the SFRD.
Binary interactions, especially mass transfer and mergers, can strongly influence the evolution of massive stars and change their final properties and the occurrence of supernovae. Here, we investigate how binary interactions affect predictions of th e diffuse flux of neutrinos. By performing stellar population syntheses including prescriptions for binary interactions, we show that the resulting detection rates of the diffuse supernova neutrino background is enhanced by 15%-20% compared to estimates without binary considerations. A source of significant uncertainty arises due to the presently sparse knowledge of the evolution of rapidly rotating carbon-oxygen cores, especially those created as a result of mergers near the white dwarf to core collapse boundary. The enhancement effect may be as small as a few percent if the effects of rotation in postmerger systems are neglected, or as large as 75% if trends are extrapolated. Our estimates serve to highlight that binary effects can be important.
We revisit the diffuse supernova neutrino background in light of recent systematic studies of stellar core collapse that reveal the quantitative impacts of the progenitor conditions on the collapse process. In general, the dependence of the progenito r on the core-collapse neutrino emission is not monotonic in progenitor initial mass, but we show that it can, at first order, be characterized by the core compactness. For the first time, we incorporate the detailed variations in the neutrino emission over the entire mass range $8$-$100 {rm M}_odot$, based on (i) a long-term simulation of the core collapse of a $8.8 {rm M}_odot$ O-Ne-Mg core progenitor, (ii) over 100 simulations of iron core collapse to neutron stars, and (iii) half a dozen simulations of core collapse to black holes (the failed channel). The fraction of massive stars that undergo the failed channel remains uncertain, but in view of recent simulations which reveal high compactness to be conducive to collapse to black holes, we characterize the failed fraction by considering a threshold compactness above which massive stars collapse to black holes and below which the final remnant is a neutron star. We predict that future detections of the diffuse supernova neutrino background may have the power to reveal this threshold compactness, if its value is relatively small as suggested by interpretations of several recent astronomical observations.
LENA (Low Energy Neutrino Astronomy) has been proposed as a next generation 50 kt liquid scintillator detector. Its large target mass allows to search for the Diffuse Supernova Neutrino Background (DSNB), which was generated by the cumulative emissio ns of all core-collapse supernovae throughout the universe. Indistinguishable background from reactor and atmospheric electron antineutrinos limits the detection window to the energy range between 9.5 MeV and 25 MeV. Depending on the mean supernova neutrino energy, about 5 to 10 events per year are expected in this energy window. The background from neutral current reactions of atmospheric neutrinos surpasses the DSNB by more than one order magnitude, but can be suppressed by pulse shape discrimination. Assuming that the residual background is known with 5% uncertainty, the DSNB can be detected with 2 sigma significance after 10 years of data taking. In case that no hint for a signal is seen, current standard DSNB models would be ruled out with more than 90% C.L.
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With s uch a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا