ترغب بنشر مسار تعليمي؟ اضغط هنا

The operational significance of the quantum resource theory of Buscemi nonlocality

101   0   0.0 ( 0 )
 نشر من قبل Patryk Lipka-Bartosik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although entanglement is necessary for observing nonlocality in a Bell experiment, there are entangled states which can never be used to demonstrate nonlocal correlations. In a seminal paper [PRL 108, 200401 (2012)] F. Buscemi extended the standard Bell experiment by allowing Alice and Bob to be asked quantum, instead of classical, questions. This gives rise to a broader notion of nonlocality, one which can be observed for every entangled state. In this work we study a resource theory of this type of nonlocality referred to as Buscemi nonlocality. We propose a geometric quantifier measuring the ability of a given state and local measurements to produce Buscemi nonlocal correlations and establish its operational significance. In particular, we show that any distributed measurement which can demonstrate Buscemi nonlocal correlations provides strictly better performance than any distributed measurement which does not use entanglement in the task of distributed state discrimination. We also show that the maximal amount of Buscemi nonlocality that can be generated using a given state is precisely equal to its entanglement content. Finally, we prove a quantitative relationship between: Buscemi nonlocality, the ability to perform nonclassical teleportation, and entanglement. Using this relationship we propose new discrimination tasks for which nonclassical teleportation and entanglement lead to an advantage over their classical counterparts.

قيم البحث

اقرأ أيضاً

Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems, their dynamics, and interaction. Since the inception of quantum theory, it has been debated wh ether complex numbers are actually essential, or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem both theoretically and experimentally, using the powerful tools of quantum resource theories. We show that - under reasonable assumptions - quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions which include the state-conversion problem for all qubit states and all pure states of any dimension, and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role for state discrimination: there exist real quantum states which can be perfectly distinguished via local operations and classical communication, but which cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, performing discrimination of different two-photon quantum states by local projective measurements. These results prove that complex numbers are an indispensable part of quantum mechanics.
113 - Barbara Amaral 2019
In addition to the important role of contextuality in foundations of quantum theory, this intrinsically quantum property has been identified as a potential resource for quantum advantage in different tasks. It is thus of fundamental importance to stu dy contextuality from the point of view of resource theories, which provide a powerful framework for the formal treatment of a property as an operational resource. In this contribution we review recent developments towards a resource theory of contextuality and connections with operational applications of this property.
A combination of a finite number of linear independent states forms superposition in a way that cannot be conceived classically. Here, using the tools of resource theory of superposition, we give the conditions for a class of superposition state tran sformations. These conditions strictly depend on the scalar products of the basis states and reduce to the well-known majorization condition for quantum coherence in the limit of orthonormal basis. To further superposition-free transformations of $d$-dimensional systems, we provide superposition-free operators for a deterministic transformation of superposition states. The linear independence of a finite number of basis states requires a relation between the scalar products of these states. With this information in hand, we determine the maximal superposition states which are valid over a certain range of scalar products. Notably, we show that, for $dgeq3$, scalar products of the pure superposition-free states have a greater place in seeking maximally resourceful states. Various explicit examples illustrate our findings.
Recently, various non-classical properties of quantum states and channels have been characterized through an advantage they provide in specific quantum information tasks over their classical counterparts. Such advantage can be typically proven to be quantitative, in that larger amounts of quantum resources lead to better performance in the corresponding tasks. So far, these characterizations have been established only in the finite-dimensional setting. In this manuscript, we present a technique for extending the known results to the infinite-dimensional regime. The technique relies on approximating infinite-dimensional resource measures by their finite-dimensional counterparts. We give a sufficient condition for the approximation procedure to be tight, i.e. to match with established infinite-dimensional resource quantifiers, and another sufficient condition for the procedure to match with relevant extensions of these quantifiers. We show that various continuous variable quantum resources fall under these conditions, hence, giving them an operational interpretation through the advantage they can provide in so-called quantum games. Finally, we extend the interpretation to the max relative entropy in the infinite-dimensional setting.
Although quantum channels underlie the dynamics of quantum states, maps which are not physical channels -- that is, not completely positive -- can often be encountered in settings such as entanglement detection, non-Markovian quantum dynamics, or err or mitigation. We introduce an operational approach to the quantitative study of the non-physicality of linear maps based on different ways to approximate a given linear map with quantum channels. Our first measure directly quantifies the cost of simulating a given map using physically implementable quantum channels, shifting the difficulty in simulating unphysical dynamics onto the task of simulating linear combinations of quantum states. Our second measure benchmarks the quantitative advantages that a non-completely-positive map can provide in discrimination-based quantum games. Notably, we show that for any trace-preserving map, the quantities both reduce to a fundamental distance measure: the diamond norm, thus endowing this norm with new operational meanings in the characterisation of linear maps. We discuss applications of our results to structural physical approximations of positive maps, quantification of non-Markovianity, and bounding the cost of error mitigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا