ﻻ يوجد ملخص باللغة العربية
The turbulent boundary layer over a flat plate is computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations as a test bed for a synthetic turbulence generator (STG) inflow boundary condition. The inlet momentum thickness Reynolds number is approximately 1,000. The study provides validation of the ability of the STG to develop accurate turbulence in 5 to 7 boundary layer thicknesses downstream of the boundary condition. Also tested was the effect of changes in the stabilization scheme on the development of the boundary layer. Moreover, the grid resolution required for both the development region and the downstream flow is investigated when using a stabilized finite element method.
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as
The turbulent boundary layer over a Gaussian shaped bump is computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. The two-dimensional bump causes a series of strong pressure gradients alternating in rapid succes
A study of large-scale motions from a new direct numerical simulation database of the turbulent boundary layer up to Re{theta} ~ 2500 is presented. The statistics of large-scale streamwise structures have been investigated using two-dimensional and t
Electrohydrodynamic (EHD) flow induced by planar corona discharge in the wall boundary layer region is investigated experimentally and via a multiphysics computational model. The EHD phenomena has many potential engineering applications, its optimiza
Results of direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations are presented. For the first time simultaneous formation of both direct and inverse cascades was observed in the framewo