ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Numerical Simulation of a Turbulent Boundary Layer on a Flat Plate Using Synthetic Turbulence Generation

102   0   0.0 ( 0 )
 نشر من قبل James Wright
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The turbulent boundary layer over a flat plate is computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations as a test bed for a synthetic turbulence generator (STG) inflow boundary condition. The inlet momentum thickness Reynolds number is approximately 1,000. The study provides validation of the ability of the STG to develop accurate turbulence in 5 to 7 boundary layer thicknesses downstream of the boundary condition. Also tested was the effect of changes in the stabilization scheme on the development of the boundary layer. Moreover, the grid resolution required for both the development region and the downstream flow is investigated when using a stabilized finite element method.



قيم البحث

اقرأ أيضاً

This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_tau approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would require a camera and laser that moves with the flow, effectively `chasing eddies as they advect downstream.
The turbulent boundary layer over a Gaussian shaped bump is computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. The two-dimensional bump causes a series of strong pressure gradients alternating in rapid succes sion. At the inflow, the momentum thickness Reynolds number is approximately 1,000 and the boundary layer thickness is 1/8 of the bump height. DNS results show that the strong favorable pressure gradient (FPG) causes the boundary layer to enter a relaminarization process. The near-wall turbulence is significantly weakened and becomes intermittent, however relaminarization does not complete. The streamwise velocity profiles deviate above the standard logarithmic law and the Reynolds shear stress is reduced. The strong acceleration also suppresses the wall-shear normalized turbulent kinetic energy production rate. At the bump peak, where the FPG switches to an adverse gradient (APG), the near-wall turbulence is suddenly enhanced through a partial retransition process. This results in a new highly energized internal layer which is more resilient to the strong APG and only produces incipient flow separation on the downstream side. In the strong FPG and APG regions, the inner and outer layers become largely independent of each other. The near-wall region responds to the pressure gradients and determines the skin friction. The outer layer behaves similarly to a free-shear layer subject to pressure gradients and mean streamline curvature effects. Results from a RANS simulation of the bump are also discussed and clearly show the lack of predictive capacity of the near-wall pressure gradient effects on the mean flow.
A study of large-scale motions from a new direct numerical simulation database of the turbulent boundary layer up to Re{theta} ~ 2500 is presented. The statistics of large-scale streamwise structures have been investigated using two-dimensional and t hree-dimensional extraction procedures. The large-scale structures are abstracted using a robust skeletonization method usually applied to other research domains to simplify complex 3D objects. Different structure parameters such as the length, shape or angle are investigated. The features of the detected structures are compared to their mean counterparts extracted from two-point correlations. Structures as large as 10 boundary layer thickness are observed. The streamwise length of these structures follows a -2 power law distribution, similar to the experimental findings at higher Reynolds numbers.
Electrohydrodynamic (EHD) flow induced by planar corona discharge in the wall boundary layer region is investigated experimentally and via a multiphysics computational model. The EHD phenomena has many potential engineering applications, its optimiza tion requires a mechanistic understanding of the ion and flow transport. The corona EHD actuator consisting of two electrodes located in the wall boundary layer creates an EHD driven wall jet. The applied voltage between the electrodes is varied and the resulting effects in the charge density and flow field are measured. Constant current hotwire anemometry is used to measure velocity profile. The airflow near the wall acts a jet and it reaches a maximum of 1.7 m/s with an energy conversion efficiency of ~2%. The velocity decreases sharply in the normal direction. Multiphysics numerical model couples ion transport equation and the Navier Stokes equations to solve for the spatiotemporal distribution of electric field, charge density and flow field. The numerical results match experimental data shedding new insights into mass, charge and momentum transport phenomena. The EHD driven flow can be applied to flow control strategies and design of novel particle collectors.
Results of direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations are presented. For the first time simultaneous formation of both direct and inverse cascades was observed in the framewo rk of primordial dynamical equations. At the same time, strong long waves background was developed. It was shown, that obtained Kolmogorov spectra are very sensitive to the presence of this condensate. Such situation has to be typical for experimental wave tanks, flumes, and small lakes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا