ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Blood Flow in the Virtual Human: Efficient Self-Coupling of HemeLB

407   0   0.0 ( 0 )
 نشر من قبل Jon McCullough
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many scientific and medical researchers are working towards the creation of a virtual human - a personalised digital copy of an individual - that will assist in a patients diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries.



قيم البحث

اقرأ أيضاً

85 - J. Xu , A. K. Jahromi , J. Brake 2020
Infrared light scattering methods have been developed and employed to non-invasively monitor human cerebral blood flow (CBF). However, the number of reflected photons that interact with the brain is low when detecting blood flow in deep tissue. To ta ckle this photon-starved problem, we present and demonstrate the idea of interferometric speckle visibility spectroscopy (ISVS). In ISVS, an interferometric detection scheme is used to boost the weak signal light. The blood flow dynamics are inferred from the speckle statistics of a single frame speckle pattern. We experimentally demonstrated the improvement of measurement fidelity by introducing interferometric detection when the signal photon number is insufficient. We apply the ISVS system to monitor the human CBF in situations where the light intensity is $sim$100-fold less than that in common diffuse correlation spectroscopy (DCS) implementations. Due to the large number of pixels ($sim 2times 10^5$) used to capture light in the ISVS system, we are able to collect a similar number of photons within one exposure time as in normal DCS implementations. Our system operates at a sampling rate of 100 Hz. At the exposure time of 2 ms, the average signal photon electron number is $sim$0.95 count/pixel, yielding a single pixel interferometric measurement signal-to-noise ratio (SNR) of $sim$0.97. The total $sim 2times 10^5$ pixels provide an expected overall SNR of 436. We successfully demonstrate that the ISVS system is able to monitor the human brain pulsatile blood flow, as well as the blood flow change when a human subject is doing a breath holding task.
A finite element analysis of flows of an Oldroyd-B fluid is developed, to simulate blood flow in an arteriovenous fistula. The model uses a combination of a standard conforming finite element approximation for the momentum equation, and the discontin uous Galerkin method, with upwinding, for the equation governing the evolution of the extra stress. The model is verified for a range of values of Weissenberg number We by applying it to the benchmark problem of flow past a cylinder in a channel. The main application is to flow in an arteriovenous fistula, the geometry of which is based on patient-specific data. Results for Oldroyd-B fluids are compared with those for a Newtonian fluid as well as with data from patient-specific velocity MRI scans. Features such as streamlines and regions of recirculation are similar across a range of values of We and the Newtonian case. There is however a strong dependence of maximum wall shear stress on We, with values for the viscoelastic fluid in all cases being higher than that for the Newtonian case.
An arteriovenous fistula, created by artificially connecting segments of a patients vasculature, is the preferred way to gain access to the bloodstream for kidney dialysis. The increasing power and availability of supercomputing infrastructure means that it is becoming more realistic to use simulations to help identify the best type and location of a fistula for a specific patient. We describe a 3D fistula model that uses the lattice Boltzmann method to simultaneously resolve blood flow in patient-specific arteries and veins. The simulations conducted here, comprising vasculatures of the whole forearm, demonstrate qualified validation against clinical data. Ongoing research to further encompass complex biophysics on realistic time scales will permit the use of human-scale physiological models for basic and clinical medicine.
We tested the hypothesis that simple exercises may significantly increase cerebral blood flow (CBF) and/or cerebral oxygenation. Eighteen subjects ranging in age from nineteen to thirty nine participated in a four-stage study during which measurement s of end tidal CO_2 (EtCO2 - by capnometer) and local brain oxygenation (by near-infrared spectroscopy (NIRS) sensor) were taken. The four stages were 1) baseline, 2) breathing exercises, 3) solving an arithmetic problem, and 4) biofeedback. During the breathing exercises there was a significant increase in EtCO2 indicating a significant increase in global CBF. The increase in global CBF was estimated on the basis of a theoretical model. During the arithmetic and biofeedback tasks there was a significant increase in the local (Fp1) oxygenation, but it varied between the different participants. The results may lead to new clinical applications of CBF and brain oxygenation monitoring and behavioral control. We foresee future more detailed investigations in the control of CO2 in brain circulation in specific regions of the brain involved in cognition and memory.
155 - A. Kihm , S. Quint , M. W. Laschke 2021
The microvascular networks in the body of vertebrates consist of the smallest vessels such as arterioles, capillaries, and venules. The flow of RBCs through these networks ensures the gas exchange in as well as the transport of nutrients to the tissu es. Any alterations in this blood flow may have severe implications on the health state. Since the vessels in these networks obey dimensions similar to the diameter of RBCs, dynamic effects on the cellular scale play a key role. The steady progression in the numerical modeling of RBCs, even in complex networks, has led to novel findings in the field of hemodynamics, especially concerning the impact and the dynamics of lingering events, when a cell meets a branch of the network. However, these results are yet to be matched by a detailed analysis of the lingering experiments in vivo. To quantify this lingering effect in in vivo experiments, this study analyzes branching vessels in the microvasculature of Syrian golden hamsters via intravital microscopy and the use of an implanted dorsal skinfold chamber. It also presents a detailed analysis of these lingering effects of cells at the apex of bifurcating vessels, affecting the temporal distribution of cell-free areas of blood flow in the branches, even causing a partial blockage in severe cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا