ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Instructions at Different Levels of Abstraction

100   0   0.0 ( 0 )
 نشر من قبل Arne K\\\"ohn
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When generating technical instructions, it is often convenient to describe complex objects in the world at different levels of abstraction. A novice user might need an object explained piece by piece, while for an expert, talking about the complex object (e.g. a wall or railing) directly may be more succinct and efficient. We show how to generate building instructions at different levels of abstraction in Minecraft. We introduce the use of hierarchical planning to this end, a method from AI planning which can capture the structure of complex objects neatly. A crowdsourcing evaluation shows that the choice of abstraction level matters to users, and that an abstraction strategy which balances low-level and high-level object descriptions compares favorably to ones which dont.



قيم البحث

اقرأ أيضاً

Media organizations bear great reponsibility because of their considerable influence on shaping beliefs and positions of our society. Any form of media can contain overly biased content, e.g., by reporting on political events in a selective or incomp lete manner. A relevant question hence is whether and how such form of imbalanced news coverage can be exposed. The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically. In this regard we utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment. By analyzing this model on article excerpts, we find insightful bias patterns at different levels of text granularity, from single words to the whole article discourse.
People learn in fast and flexible ways that have not been emulated by machines. Once a person learns a new verb dax, he or she can effortlessly understand how to dax twice, walk and dax, or dax vigorously. There have been striking recent improvements in machine learning for natural language processing, yet the best algorithms require vast amounts of experience and struggle to generalize new concepts in compositional ways. To better understand these distinctively human abilities, we study the compositional skills of people through language-like instruction learning tasks. Our results show that people can learn and use novel functional concepts from very few examples (few-shot learning), successfully applying familiar functions to novel inputs. People can also compose concepts in complex ways that go beyond the provided demonstrations. Two additional experiments examined the assumptions and inductive biases that people make when solving these tasks, revealing three biases: mutual exclusivity, one-to-one mappings, and iconic concatenation. We discuss the implications for cognitive modeling and the potential for building machines with more human-like language learning capabilities.
104 - Yayu Peng , Yishen Wang , Xiao Lu 2019
Short-term load forecasting (STLF) is essential for the reliable and economic operation of power systems. Though many STLF methods were proposed over the past decades, most of them focused on loads at high aggregation levels only. Thus, low-aggregati on load forecast still requires further research and development. Compared with the substation or city level loads, individual loads are typically more volatile and much more challenging to forecast. To further address this issue, this paper first discusses the characteristics of small-and-medium enterprise (SME) and residential loads at different aggregation levels and quantifies their predictability with approximate entropy. Various STLF techniques, from the conventional linear regression to state-of-the-art deep learning, are implemented for a detailed comparative analysis to verify the forecasting performances as well as the predictability using an Irish smart meter dataset. In addition, the paper also investigates how using data processing improves individual-level residential load forecasting with low predictability. Effectiveness of the discussed method is validated with numerical results.
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. NLP models built with the conventional paradigm, however, often struggle with gen eralization across tasks (e.g., a question-answering system cannot solve classification tasks). A long-standing challenge in AI is to build a model that is equipped with the understanding of human-readable instructions that define the tasks, and can generalize to new tasks. To study this, we introduce NATURAL INSTRUCTIONS, a dataset of 61 distinct tasks, their human-authored instructions and 193k task instances. The instructions are obtained from crowdsourcing instructions used to collect existing NLP datasets and mapped to a unified schema. We adopt generative pre-trained language models to encode task-specific instructions along with input and generate task output. Our results indicate that models can benefit from instructions to generalize across tasks. These models, however, are far behind supervised task-specific models, indicating significant room for more progress in this direction.
Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models -- most recently pre-trained, Transformer language models -- have demonstrated improvements in modeling event plausibility, their performance still falls short of humans. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that a person breathing is plausible while a dentist breathing is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا