ﻻ يوجد ملخص باللغة العربية
We study the slow-roll single field inflation in the context of the consistent $Dto4$ Einstein-Gauss-Bonnet gravity that was recently proposed in cite{Aoki:2020lig}. In addition to the standard attractor regime, we find a new attractor regime which we call the Gauss-Bonnet attractor as the dominant contribution comes from the Gauss-Bonnet term. Around this attractor solution, we find power spectra and spectral tilts for the curvature perturbations and gravitational waves (GWs) and also a model-independent consistency relation among observable quantities. The Gauss-Bonnet term provides a nonlinear $k^4$ term to the GWs dispersion relation which has the same order as the standard linear $k^2$ term at the time of horizon crossing around the Gauss-Bonnet attractor. The Gauss-Bonnet attractor regime thus provides a new scenario for the primordial GWs which can be tested by observations. Finally, we study non-Gaussianity of GWs in this model and estimate the nonlinear parameters $f^{s_1s_2s_3}_{rm NL,;sq}$ and $f^{s_1s_2s_3}_{rm NL,;eq}$ by fitting the computed GWs bispectra with the local-type and equilateral-type templates respectively at the squeezed limit and at the equilateral shape. For helicities $(+++)$ and $( -- )$, $f^{s_1s_2s_3}_{rm NL,;sq}$ is larger while $f^{s_1s_2s_3}_{rm NL,;eq}$ is larger for helicities $(++-)$ and $(--+)$.
In a very recent paper [1], we have proposed a novel $4$-dimensional gravitational theory with two dynamical degrees of freedom, which serves as a consistent realization of $Dto4$ Einstein-Gauss-Bonnet gravity with the rescaled Gauss-Bonnet coupling
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
We provide a refined and much more simplified Einstein-Gauss-Bonnet inflationary theoretical framework, which is compatible with the GW170817 observational constraints on the gravitational wave speed. As in previous works, the constraint that the gra
We investigate the $Drightarrow 4$ limit of the $D$-dimensional Einstein-Gauss-Bonnet gravity, where the limit is taken with $tilde{alpha}=(D-4), alpha$ kept fixed and $alpha$ is the original Gauss-Bonnet coupling. Using the ADM decomposition in $D$
In the present paper, we study the inflationary phenomenology of a $k$-inflation corrected Einstein-Gauss-Bonnet theory. Non-canonical kinetic terms are known for producing Jean instabilities or superluminal sound wave velocities in the aforementione