ﻻ يوجد ملخص باللغة العربية
This work deals with the challenge of learning and reasoning over multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn cross paragraph reasoning paths and find the supporting facts and the answer jointly. The proposed graph is a heterogeneous document-level graph that contains nodes of type sentence (question, title, and other sentences), and semantic role labeling sub-graphs per sentence that contain arguments as nodes and predicates as edges. Incorporating the argument types, the argument phrases, and the semantics of the edges originated from SRL predicates into the graph encoder helps in finding and also the explainability of the reasoning paths. Our proposed approach shows competitive performance on the HotpotQA distractor setting benchmark compared to the recent state-of-the-art models.
Semantic role labeling (SRL) is a task to recognize all the predicate-argument pairs of a sentence, which has been in a performance improvement bottleneck after a series of latest works were presented. This paper proposes a novel syntax-agnostic SRL
Semantic role labeling (SRL) aims to extract the arguments for each predicate in an input sentence. Traditional SRL can fail to analyze dialogues because it only works on every single sentence, while ellipsis and anaphora frequently occur in dialogue
Semantic role labeling is primarily used to identify predicates, arguments, and their semantic relationships. Due to the limitations of modeling methods and the conditions of pre-identified predicates, previous work has focused on the relationships b
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; h
Semantic role labeling (SRL), also known as shallow semantic parsing, is an important yet challenging task in NLP. Motivated by the close correlation between syntactic and semantic structures, traditional discrete-feature-based SRL approaches make he