ترغب بنشر مسار تعليمي؟ اضغط هنا

3D beamforming and handover analysis for UAV networks

82   0   0.0 ( 0 )
 نشر من قبل Achiel Colpaert
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In future drone applications fast moving unmanned aerial vehicles (UAVs) will need to be connected via a high throughput ultra reliable wireless link. MmWave communication is assumed to be a promising technology for UAV communication, as the narrow beams cause little interference to and from the ground. A challenge for such networks is the beamforming requirement, and the fact that frequent handovers are required as the cells are small. In the UAV communication research community, mobility and especially handovers are often neglected, however when considering beamforming, antenna array sizes start to matter and the effect of azimuth and elevation should be studied, especially their impact on handover rate and outage capacity. This paper aims to fill some of this knowledge gap and to shed some light on the existing problems. This work will analyse the performance of 3D beamforming and handovers for UAV networks through a case study of a realistic 5G deployment using mmWave. We will look at the performance of a UAV flying over a city utilizing a beamformed mmWave link.



قيم البحث

اقرأ أيضاً

We consider the relaying application of unmanned aerial vehicles (UAVs), in which UAVs are placed between two transceivers (TRs) to increase the throughput of the system. Instead of studying the placement of UAVs as pursued in existing literature, we focus on investigating the placement of a jammer or a major source of interference on the ground to effectively degrade the performance of the system, which is measured by the maximum achievable data rate of transmission between the TRs. We demonstrate that the optimal placement of the jammer is in general a non-convex optimization problem, for which obtaining the solution directly is intractable. Afterward, using the inherent characteristics of the signal-to-interference ratio (SIR) expressions, we propose a tractable approach to find the optimal position of the jammer. Based on the proposed approach, we investigate the optimal positioning of the jammer in both dual-hop and multi-hop UAV relaying settings. Numerical simulations are provided to evaluate the performance of our proposed method.
Deployment of unmanned aerial vehicles (UAVs) is recently getting significant attention due to a variety of practical use cases, such as surveillance, data gathering, and commodity delivery. Since UAVs are powered by batteries, energy efficient commu nication is of paramount importance. In this paper, we investigate the problem of lifetime maximization of a UAV-assisted network in the presence of multiple sources of interference, where the UAVs are deployed to collect data from a set of wireless sensors. We demonstrate that the placement of the UAVs play a key role in prolonging the lifetime of the network since the required transmission powers of the UAVs are closely related to their locations in space. In the proposed scenario, the UAVs transmit the gathered data to a primary UAV called textit{leader}, which is in charge of forwarding the data to the base station (BS) via a backhaul UAV network. We deploy tools from spectral graph theory to tackle the problem due to its high non-convexity. Simulation results demonstrate that our proposed method can significantly improve the lifetime of the UAV network.
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of UAV swarm, the remote control signal sent by ground control unit (GCU) is essential, whereas the control signal quality are susceptible in practice due to the effect of the adjacent channel interference (ACI) and the external interference (EI) from radiation sources distributed across the region. To tackle these challenges, this paper considers priority-aware resource coordination in a multi-UAV communication system, where multiple UAVs are controlled by a GCU to perform certain tasks with a pre-defined trajectory. Specifically, we maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the UAVs by jointly optimizing channel assignment and power allocation strategy under stringent resource availability constraints. According to the intensity of ACI, we consider the corresponding problem in two scenarios, i.e., Null-ACI and ACI systems. By virtue of the particular problem structure in Null-ACI case, we first recast the formulation into an equivalent yet more tractable form and obtain the global optimal solution via Hungarian algorithm. For general ACI systems, we develop an efficient iterative algorithm for its solution based on the smooth approximation and alternating optimization methods. Extensive simulation results demonstrate that the proposed algorithms can significantly enhance the minimum SINR among all the UAVs and adapt the allocation of communication resources to diverse mission priority.
In this paper, we consider a wireless uplink transmission scenario in which an unmanned aerial vehicle (UAV) serves as an aerial base station collecting data from ground users. To optimize the expected sum uplink transmit rate without any prior knowl edge of ground users (e.g., locations, channel state information and transmit power), the trajectory planning problem is optimized via the quantum-inspired reinforcement learning (QiRL) approach. Specifically, the QiRL method adopts novel probabilistic action selection policy and new reinforcement strategy, which are inspired by the collapse phenomenon and amplitude amplification in quantum computation theory, respectively. Numerical results demonstrate that the proposed QiRL solution can offer natural balancing between exploration and exploitation via ranking collapse probabilities of possible actions, compared to the traditional reinforcement learning approaches which are highly dependent on tuned exploration parameters.
Unmanned aerial vehicles (UAVs) are emerging in commercial spaces and will support many applications and services, such as smart agriculture, dynamic network deployment, and network coverage extension, surveillance and security. The unmanned aircraft system (UAS) traffic management (UTM) provides a framework for safe UAV operation integrating UAV controllers and central data bases via a communications network. This paper discusses the challenges and opportunities for machine learning (ML) for effectively providing critical UTM services. We introduce the four pillars of UTM---operation planning, situational awareness, status and advisors and security---and discuss the main services, specific opportunities for ML and the ongoing research. We conclude that the multi-faceted operating environment and operational parameters will benefit from collected data and data-driven algorithms, as well as online learning to face new UAV operation situations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا