ﻻ يوجد ملخص باللغة العربية
The original Hegselmann-Krause (HK) model consists of a set of~$n$ agents that are characterized by their opinion, a number in~$[0, 1]$. Each agent, say agent~$i$, updates its opinion~$x_i$ by taking the average opinion of all its neighbors, the agents whose opinion differs from~$x_i$ by at most~$epsilon$. There are two types of~HK models: the synchronous~HK model and the asynchronous~HK model. For the synchronous model, all the agents update their opinion simultaneously at each time step, whereas for the asynchronous~HK model, only one agent chosen uniformly at random updates its opinion at each time step. This paper is concerned with a variant of the~HK opinion dynamics, called the mixed~HK model, where each agent can choose its degree of stubbornness and mix its opinion with the average opinion of its neighbors at each update. The degree of the stubbornness of agents can be different and/or vary over time. An agent is not stubborn or absolutely open-minded if its new opinion at each update is the average opinion of its neighbors, and absolutely stubborn if its opinion does not change at the time of the update. The particular case where, at each time step, all the agents are absolutely open-minded is the synchronous~HK model. In contrast, the asynchronous model corresponds to the particular case where, at each time step, all the agents are absolutely stubborn except for one agent chosen uniformly at random who is absolutely open-minded. We first show that some of the common properties of the synchronous~HK model, such as finite-time convergence, do not hold for the mixed model. We then investigate conditions under which the asymptotic stability holds, or a consensus can be achieved for the mixed model.
The original Hegselmann-Krause (HK) model is composed of a finite number of agents characterized by their opinion, a number in $[0,1]$. An agent updates its opinion via taking the average opinion of its neighbors whose opinion differs by at most $eps
This paper elaborates control strategies to prevent clustering effects in opinion formation models. This is the exact opposite of numerous situations encountered in the literature where, on the contrary, one seeks controls promoting consensus. In ord
In the present chapter we study the emergence of global patterns in large groups in first and second-order multi-agent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space dete
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to
Mixed-mode oscillations (MMOs) are complex oscillatory patterns in which large-amplitude relaxation oscillations (LAOs) alternate with small-amplitude oscillations (SAOs). MMOs are found in singularly perturbed systems of ordinary differential equati