ﻻ يوجد ملخص باللغة العربية
The metallicity dependence of the wide-binary fraction in stellar populations plays a critical role in resolving the open question of wide binary formation. In this paper, we investigate the metallicity ([Fe/H]) and age dependence of the wide-binary fraction (binary separations between $10^3$ and $10^4$ AU) for field F and G dwarfs within 500 pc by combining their metallicity and radial velocity measurements from LAMOST DR5 with the astrometric information from Gaia DR2. We show that the wide-binary fraction strongly depends on the metallicity: as metallicity increases, the wide-binary fraction first increases, peaks at [Fe/H]$simeq 0$, and then decreases at the high metallicity end. The wide-binary fraction at [Fe/H]$=0$ is about two times larger than that at [Fe/H]$=-1$ and [Fe/H]$=+0.5$. This metallicity dependence is dominated by the thin-disk stars. Using stellar kinematics as a proxy of stellar age, we show that younger stars have a higher wide-binary fraction at fixed metallicity close to solar. We propose that multiple formation channels are responsible for the metallicity and age dependence. In particular, the positive metallicity correlation at [Fe/H]$<0$ and the age dependence may be due to the denser formation environments and higher-mass clusters at earlier times. The negative metallicity correlation at [Fe/H]$>0$ can be inherited from the similar metallicity dependence of close binaries, and radial migration may play a role in enhancing the wide-binary fraction around the solar metallicity.
There is now strong evidence that the close binary fraction (P < 10$^4$ days; a < 10 AU) of solar-type stars ($M_1$ = 0.6-1.5M$_{odot}$) decreases significantly with metallicity. Although early surveys showed that the observed spectroscopic binary (S
A large population of fragile, wide (> 1000 AU) binary systems exists in the Galactic field and halo. These wide binary stars cannot be primordial because of the high stellar density in star forming regions, while formation by capture in the Galactic
The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete samp
Populations of massive stars are directly reflective of the physics of stellar evolution. Counting subtypes of massive stars and ratios of massive stars in different evolutionary states have been used ubiquitously as diagnostics of age and metallicit
Population synthesis models predict that high-mass X-ray binary (HMXB) populations produced in low metallicity environments should be more X-ray luminous, a trend supported by studies of nearby galaxies. This trend may be responsible for the observed