ﻻ يوجد ملخص باللغة العربية
Adaptive synchronization protocols for heterogeneous multi-agent network are investigated. The interaction between each of the agents is carried out through a directed graph. We highlight the lack of communication between agents and the presence of uncertainties in each system among the conventional problems that can arise in cooperative networks. Two methodologies are presented to deal with the uncertainties: A strategy based on robust optimal control and a strategy based on neural networks. Likewise, an input estimation methodology is designed to face the disconnection that any agent may present on the network. These control laws can guarantee synchronization between agents even when there are disturbances or no communication from any agent. Stability and boundary analyzes are performed. Cooperative cruise control simulation results are shown to validate the performance of the proposed control methods.
In this paper, we consider scalable output and regulated output synchronization problems for heterogeneous networks of right-invertible linear agents based on localized information exchange where in the case of regulated output synchronization, the r
This paper studies scale-free protocol design for H_infty almost output and regulated output synchronization of heterogeneous multi-agent systems with linear, right-invertible, and introspective agents in presence of external disturbances. The collab
This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which does not need any k
This paper studies global regulated state synchronization of homogeneous networks of non-introspective agents in presence of input saturation. We identify three classes of agent models which are neutrally stable, double-integrator, and mixed of doubl
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback b