ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Synchronization of Heterogeneous Multi-Agent Systems: A Free Observer Approach

261   0   0.0 ( 0 )
 نشر من قبل Miguel F Arevalo-Castiblanco
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Adaptive synchronization protocols for heterogeneous multi-agent network are investigated. The interaction between each of the agents is carried out through a directed graph. We highlight the lack of communication between agents and the presence of uncertainties in each system among the conventional problems that can arise in cooperative networks. Two methodologies are presented to deal with the uncertainties: A strategy based on robust optimal control and a strategy based on neural networks. Likewise, an input estimation methodology is designed to face the disconnection that any agent may present on the network. These control laws can guarantee synchronization between agents even when there are disturbances or no communication from any agent. Stability and boundary analyzes are performed. Cooperative cruise control simulation results are shown to validate the performance of the proposed control methods.

قيم البحث

اقرأ أيضاً

In this paper, we consider scalable output and regulated output synchronization problems for heterogeneous networks of right-invertible linear agents based on localized information exchange where in the case of regulated output synchronization, the r eference trajectory is generated by a so-called exosystem. We assume that all the agents are introspective, meaning that they have access to their own local measurements. We propose a scale-free linear protocol for each agent to achieve output and regulated output synchronizations. These protocols are designed solely based on agent models and they need no information about communication graph and the number of agents or other agent models information.
This paper studies scale-free protocol design for H_infty almost output and regulated output synchronization of heterogeneous multi-agent systems with linear, right-invertible, and introspective agents in presence of external disturbances. The collab orative linear protocol designs are based on localized information exchange over the same communication network, which do not require any knowledge of the directed network topology and spectrum of the associated Laplacian matrix. Moreover, the proposed scale-free protocols achieve H_infty almost synchronization with a given arbitrary degree of accuracy for any size of the network.
This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which does not need any k nowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The main contribution of this paper is that the proposed protocols are scale-free and achieve synchronization for arbitrary number of agents.
This paper studies global regulated state synchronization of homogeneous networks of non-introspective agents in presence of input saturation. We identify three classes of agent models which are neutrally stable, double-integrator, and mixed of doubl e-integrator, single-integrator and neutrally stable dynamics. A textit{scale-free linear observer-based} protocol design methodology is developed based on localized information exchange among neighbors where the reference trajectory is given by a so-called exosystem which is assumed to be globally reachable. Our protocols do not need any knowledge about the communication network topology and the spectrum of associated Laplacian matrix. Moreover, the proposed protocol is scalable and is designed based on only knowledge of agent models and achieves synchronization for any communication graph with arbitrary number of agents.
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback b ased protocols that guarantee the associated cost to be smaller than a given upper bound while the controlled network achieves output synchronization. A design method is provided to compute such protocols. For each agent, the computation of its two local control gains involves two Riccati inequalities, each of dimension equal to the state space dimension of the agent. A simulation example is provided to illustrate the performance of the proposed protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا