ﻻ يوجد ملخص باللغة العربية
It has been proposed that one can look for the QCD critical point (CP) by the Beam Energy Scan (BES) accurately monitoring event-by-event fluctuations. This experimental program is under way at the BNL RHIC collider. Separately, it has been studied how clustering of nucleons at freezeout affects proton multiplicity distribution and light nuclei production. It was found that even a minor increase of the range of nuclear forces dramatically increases clustering, while large correlation length $xi$ near CP makes attraction due to binary forces unrealistically large. In this paper we show that repulsive many-body forces near CP should overcome the binary ones and effectively suppress clustering. We also discuss current experimental data and point out locations at which a certain drop in clustering may already be observed.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph
We present a fully dynamical model to study the chiral and deconfinement transition of QCD simultaneously. The quark degrees of freedom constitute a heat bath in local equilibrium for both order parameters, the sigma field and a dynamical Polyakov lo
The evolution of non-hydrodynamic slow processes near the QCD critical point is explored with the novel Hydro+ framework, which extends the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes describing l
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting
We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and many-body processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N fo