ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting quasibound states of negative ions

90   0   0.0 ( 0 )
 نشر من قبل Marianna Safronova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrated the accurate prediction of a quasibound spectrum of a negative ion using a novel high-precision theoretical approach. We used La$^-$ as a test case due to a recent experiment that measured energies of 11 resonances in its photodetachment spectrum attributed to transitions to quasibound states [C. W. Walter et al., PRA, in press (2020); arXiv:2010.01122]. We identified all of the observed resonances, and predicted one more peak just outside the range of the prior experiment. Following the theoretical prediction, the peak was observed at the predicted wavelength, validating the identification. The same approach is applicable to a wide range of negative ions. Moreover, theory advances reported in this work can be used for massive generation of atomic transition properties for neutrals and positive ions needed for a variety of applications.

قيم البحث

اقرأ أيضاً

Characterizing quasibound states from coupled-channel scattering calculations can be a laborious task, involving extensive manual iteration and fitting. We present an automated procedure, based on the phase shift or S-matrix eigenphase sum, that reli ably converges on a quasibound state (or scattering resonance) from some distance away. It may be used for both single-channel and multichannel scattering. It produces the energy and width of the state and the phase shift of the background scattering, and hence the lifetime of the state. It also allows extraction of partial widths for decay to individual open channels. We demonstrate the method on a very narrow state in the Van der Waals complex Ar--H$_2$, which decays only by vibrational predissociation, and on near-threshold states of $^{85}$Rb$_2$, whose lifetime varies over 4 orders of magnitude as a function of magnetic field.
The negative ion of lanthanum, La$^-$, has one of the richest bound state spectra observed for an atomic negative ion and has been proposed as a promising candidate for laser-cooling applications. In the present experiments, La$^-$ was investigated u sing tunable infrared photodetachment spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam--laser-beam apparatus over the photon energy range 590 - 920 meV (2100 - 1350 nm) to probe the continuum region above the La neutral atom ground state. Eleven prominent peaks were observed in the La$^-$ photodetachment cross section due to resonant excitation of quasibound transient negative ion states in the continuum which subsequently autodetach. In addition, thresholds were observed for photodetachment from several bound states of La$^-$ to both ground and excited states of La. The present results provide information on the excited state structure and dynamics of La$^-$ that depend crucially on multielectron correlation effects.
Lorentz symmetry is one of the cornerstones of modern physics. However, a number of theories aiming at unifying gravity with the other fundamental interactions including string field theory suggest violation of Lorentz symmetry [1-4]. While the ene rgy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, Lorentz violation may nevertheless be detectable via precision measurements at low energies [2]. Here, we carry out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to violation of local Lorentz invariance (LLI). Aim of these studies is to identify which atom shows the biggest promise to detect violation of Lorentz symmetry. We identify the Yb+ ion as an ideal system with high sensitivity as well as excellent experimental controllability. By applying quantum information inspired technology to Yb+, we expect tests of LLI violating physics in the electron-photon sector to reach levels of $10^{-23}$, five orders of magnitude more sensitive than the current best bounds [5-7]. Most importantly, the projected sensitivity of $10^{-23}$ for the Yb+ ion tests will allow for the first time to probe whether Lorentz violation is minimally suppressed at low energies for photons and electrons.
We propose a novel class of atomic clocks based on highly charged ions. We consider highly-forbidden laser-accessible transitions within the $4f^{12}$ ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrat es that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clock.
100 - B. K. Sahoo 2021
We present electric dipole polarizabilities ($alpha_d$) of the alkali-metal negative ions, from H$^-$ to Fr$^-$, by employing four-component relativistic many-body methods. Differences in the results are shown by considering Dirac-Coulomb (DC) Hamilt onian, DC Hamiltonian with the Breit interaction, and DC Hamiltonian with the lower-order quantum electrodynamics interactions. At first, these interactions are included self-consistently in the Dirac-Hartree-Fock (DHF) method, and then electron correlation effects are incorporated over the DHF wave functions in the second-order many-body perturbation theory, random phase approximation and coupled-cluster (CC) theory. Roles of electron correlation effects and relativistic corrections are analyzed using the above many-body methods with size of the ions. We finally quote precise values of $alpha_d$ of the above negative ions by estimating uncertainties to the CC results, and compare them with other calculations wherever available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا