ﻻ يوجد ملخص باللغة العربية
NLP models are shown to suffer from robustness issues, i.e., a models prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.
Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for
Despite recent progress, state-of-the-art question answering models remain vulnerable to a variety of adversarial attacks. While dynamic adversarial data collection, in which a human annotator tries to write examples that fool a model-in-the-loop, ca
Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discri
Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, w
The neural text generation suffers from the text degeneration issue such as repetition. Traditional stochastic sampling methods only focus on truncating the unreliable tail of the distribution, and do not address the head part, which we show might co