ترغب بنشر مسار تعليمي؟ اضغط هنا

$|Delta mathcal{B}| =2$: A State of the Field, and Looking Forward--A brief status report of theoretical and experimental physics opportunities

56   0   0.0 ( 0 )
 نشر من قبل Joshua Barrow
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the matter-antimatter asymmetry apparently obligates the laws of physics to include some mechanism of baryon number ($mathcal{B}$) violation. Searches for interactions violating $mathcal{B}$ and baryon-minus-lepton number $mathcal{(B-L)}$ represent a rich and underutilized opportunity. These are complementary to the existing, broad program of searches for $mathcal{L}$-violating modes such as neutrinoless double $beta$-decay which could provide deeper understandings of the plausibility of leptogenesis, or $mathcal{B}$-violating, $mathcal{(B-L)}$-conserving processes such as proton decay. In particular, a low-scale, post-sphaleron violation mechanism of $mathcal{(B-L)}$ could provide a textit{testable} form of baryogenesis. Though theoretically compelling, searches for such $mathcal{(B-L)}$-violating processes like $Deltamathcal{B}=2$ dinucleon decay and $nrightarrowbar{n}$ remain relatively underexplored experimentally compared to other rare processes. By taking advantage of upcoming facilities such as the Deep Underground Neutrino Experiment and the European Spallation Source, this gap can be addressed with new intranuclear and free searches for neutron transformations with very high sensitivity, perhaps greater than three orders of magnitude higher than previous experimental searches. This proceedings reports on recent theoretical and experimental advances and sensitivities of next-generation searches for neutron transformations were detailed as part of the Amherst Center for Fundamental Interactions Workshop, Theoretical Innovations for Future Experiments Regarding Baryon Number Violation, directly coordinated with the Rare Processes and Precision Measurements Frontier.

قيم البحث

اقرأ أيضاً

In this review, we discuss some interesting issues in charm physics which is full with puzzles and challenges. So far in the field there exist many problems which have not obtained satisfactory answers yet and more unexpected phenomena have been obse rved at the present facilities of high energy physics. Charm physics may become an ideal place for searching new resonances and studying non-perturbative QCD effects, moreover probably is an area to explore new physics beyond the Standard Model. More data will be available at BESIII, B-factories, LHC and even future ILC which may open a wide window to a better understanding of the nature.
This letter summarises the status of the global fit of the CKM parameters within the Standard Model performed by the CKMfitter group. Special attention is paid to the inputs for the CKM angles $alpha$ and $gamma$ and the status of $B_stomumu$ and $B_ dto mumu$ decays. We illustrate the current situation for other unitarity triangles. We also discuss the constraints on generic $Delta F=2$ New Physics. All results have been obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using Rfit to handle theoretical uncertainties.
Rare B decays allow to investigate fundamental interactions regarding their flavor, chiral, Dirac and CP properties. In anticipation of the large data samples of exclusive B decays into muons from the forthcoming LHC experiments, in particular LHCb, as well as possible super flavor factories, we review the theoretical status and outline future opportunities to explore the borders of the Standard Model and beyond.
We reemphasize that the ratio $R_{smu} equiv overline{mathcal{B}}(B_stomubarmu)/Delta M_s$ is a measure of the tension of the Standard Model (SM) with latest measurements of $overline{mathcal{B}}(B_stomubarmu)$ that does not suffer from the persisten t puzzle on the $|V_{cb}|$ determinations from inclusive versus exclusive $bto cellbar u$ decays and which affects the value of the CKM element $|V_{ts}|$ that is crucial for the SM predictions of both $overline{mathcal{B}}(B_stomubarmu)$ and $Delta M_s$, but cancels out in the ratio $R_{smu}$. In our analysis we include higher order electroweak and QED corrections und adapt the latest hadronic input to find a tension of about $2sigma$ for $R_{smu}$ measurements with the SM independently of $|V_{ts}|$. We also discuss the ratio $R_{dmu}$ which could turn out, in particular in correlation with $R_{smu}$, to be useful for the search for New Physics, when the data on both ratios improves. Also $R_{dmu}$ is independent of $|V_{cb}|$ or more precisely $|V_{td}|$.
We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct search es for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا