ﻻ يوجد ملخص باللغة العربية
In the Wendelstein 7-X magnetic confinement experiment, a reduction of turbulent density fluctuations as well as anomalous impurity diffusion is associated with a peaking of the plasma density profile. These effects correlate with improved confinement and appear largely due to a reduction of anomalous transport as the change in neoclassical transport is small. The observed decrease of turbulent heat flux with increased density gradients is in agreement with nonlinear gyrokinetic simulations, and has been attributed to the unique geometry of W7-X that limits the severity of trapped electron modes.
We study the effect of turbulent transport in different magnetic configurations of the Weldenstein 7-X stellarator. In particular, we performed direct numerical simulations with the global gyrokinetic code GENE-3D, modeling the behavior of Ion Temper
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impur
The first fast ion experiments in Wendelstein 7-X were performed in 2018. They are one of the first steps in demonstrating the optimised fast ion confinement of the stellarator. The fast ions were produced with a neutral beam injection (NBI) system a
In this work we present the first measurements obtained by the V-band Doppler reflectometer during the second operation phase of Wendelstein 7-X to discuss the influence in the velocity shear layer and the radial electric field, E$_r$, of several pla
Long pulse operation of present and future magnetic fusion devices requires sophisticated methods for protection of plasma facing components from overheating. Typically, thermographic systems are being used to fulfill this task. Steady state operatio