ﻻ يوجد ملخص باللغة العربية
In this work, we simulate the electron dynamics in molecular systems with the Time-Dependent Density Matrix Renormalization Group (TD-DMRG) algorithm. We leverage the generality of the so-called tangent-space TD-DMRG formulation and design a computational framework in which the dynamics is driven by the exact non-relativistic electronic Hamiltonian. We show that, by parametrizing the wave function as a matrix product state, we can accurately simulate the dynamics of systems including up to 20 electrons and 32 orbitals. We apply the TD-DMRG algorithm to three problems that are hardly targeted by time-independent methods: the calculation of molecular (hyper)polarizabilities, the simulation of electronic absorption spectra, and the study of ultrafast ionization dynamics.
We introduce the Nuclear Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrodinger equation simultaneously for electrons and other quantum species. In contrast to already existing mul
We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based
We recently introduced [J. Chem. Phys. 152 2020, 204103] the nuclear-electronic all-particle density matrix renormalization group method (NEAP-DMRG) to solve the molecular Schr{o}dinger equation, based on a stochastically optimized orbital basis, wit
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consiste
Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. However, the unfavorable scaling and the resulting high computational cost of standa