ترغب بنشر مسار تعليمي؟ اضغط هنا

Overhaul and Installation of the ICARUS-T600 Liquid Argon TPC Electronics for the FNAL Short Baseline Neutrino Program

94   0   0.0 ( 0 )
 نشر من قبل Guang Meng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) underwent a major overhaul at CERN in 2016-2017 to prepare for the operation at FNAL in the Short Baseline Neutrino (SBN) program. This included a major upgrade of the photo-multiplier system and of the TPC wire read-out electronics. The full TPC wire read-out electronics together with the new wire biasing and interconnection scheme are described. The design of a new signal feed-through flange is also a fundamental piece of this overhaul whose major feature is the integration of all electronics components onto the signal flange. Initial functionality tests of the full TPC electronics chain installed in the T600 detector at FNAL are also described.

قيم البحث

اقرأ أيضاً

The Icarus T600 detector represents the first example of a fully working large-mass LAr detector. After operations at the LNGS INFN laboratories, it has been refurbished at CERN in 2015-2017 and then installed as far detector on the BNB neutrino beam line at FNAL. The main operations involved in the T600 overhauling are thouroghly described in this paper.
The ICARUS T600, a liquid argon time projection chamber (LAr-TPC) detector mainly devoted to neutrino physics, underwent a major overhauling at CERN in 2016-2017, which included also a new design of the read-out electronics, in view of its operation in Fermilab on the Short Baseline Neutrino (SBN) beam from 2019. The new more compact electronics showed capability of handling more efficiently the signals also in the intermediate Induction 2 wire plane with a significant increase of signal to noise (S/N), allowing for charge measurement also in this view. The new front-end and the analog to digital conversion (ADC) system are presented together with the results of the tests on 50 liters liquid argon TPC performed at CERN with cosmic rays.
Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.
132 - Sophie Berkman 2020
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming more difficult as the detectors increase in size to reach their physics goals. In liquid argon time projection chambers (TPCs) the charged particles from neutrino interactions produce ionization electrons which drift in an electric field towards a series of collection wires, and the signal on the wires is used to reconstruct the interaction. The MicroBooNE detector currently collecting data at Fermilab has 8000 wires, and planned future experiments like DUNE will have 100 times more, which means that the time required to reconstruct an event will scale accordingly. Modernization of liquid argon TPC reconstruction code, including vectorization, parallelization and code portability to GPUs, will help to mitigate these challenges. The liquid argon TPC hit finding algorithm within the texttt{LArSoft}xspace framework used across multiple experiments has been vectorized and parallelized. This increases the speed of the algorithm on the order of ten times within a standalone version on Intel architectures. This new version has been incorporated back into texttt{LArSoft}xspace so that it can be generally used. These methods will also be applied to other low-level reconstruction algorithms of the wire signals such as the deconvolution. The applications and performance of this modernized liquid argon TPC wire reconstruction will be presented.
111 - M.Bonesini , R.Benocci , R.Bertoni 2020
The ICARUS T600 LAr TPC is the far detector of the Short Baseline Program at FNAL. As it will have to work at shallow depth in the Booster Neutrino Beam, a large cosmic rays background ($sim 11$ kHz) will be present. To reduce it, precise timing info rmation is needed from the new light detection system, based on 360 large area photomultipliers. For precise time measurements a calibration system based on a fast laser diode and a system based on one optical switch, several $1 times 10$ fused fiber splitters, ultra-high vacuum optical feedthroughs and multimode optical patchcords up to 20 m long, to distribute the laser pulses to each single PMT, was designed. The time evolution of the PMTs gain/timing and possibly their initial calibrations at a time $t_0$ will be done by using this system. The expected time resolution of this calibration system will be around 100 ps. The laboratory tests needed to set up the system are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا