ﻻ يوجد ملخص باللغة العربية
The Hamiltonian system of general relativity and its quantization without any matter or gauge fields are discussed on the basis of the symplectic geometrical theory. A symplectic geometry of classical general relativity is constructed using a generalized phase space for pure gravity. Prequantization of the symplectic manifold is performed according to the standard procedure of geometrical quantization. Quantum vacuum solutions are chosen from among the classical solutions under the Einstein-Brillouin-Keller quantization condition. A topological correction of quantum solutions, namely the Maslov index, is realized using a prequantization bundle. In addition, a possible mass spectrum of Schwarzschild black holes is discussed.
The purpose of this note is to point out that a naive application of symplectic integration schemes for Hamiltonian systems with constraints such as SHAKE or RATTLE which preserve holonomic constraints encounters difficulties when applied to the nume
The Chern-Weil topological theory is applied to a classical formulation of general relativity in four-dimensional spacetime. Einstein--Hilbert gravitational action is shown to be invariant with respect to a novel translation (co-translation) operator
Symplectic integrators that preserve the geometric structure of Hamiltonian flows and do not exhibit secular growth in energy errors are suitable for the long-term integration of N-body Hamiltonian systems in the solar system. However, the constructi
In previous papers, explicit symplectic integrators were designed for nonrotating black holes, such as a Schwarzschild black hole. However, they fail to work in the Kerr spacetime because not all variables can be separable, or not all splitting parts
In a previous paper, second- and fourth-order explicit symplectic integrators were designed for a Hamiltonian of the Schwarzschild black hole. Following this work, we continue to trace the possibility of the construction of explicit symplectic integr