ﻻ يوجد ملخص باللغة العربية
Quantum steering describes the ability of one observer to nonlocally affect the other observers state through local measurements, which represents a new form of quantum nonlocal correlation and has potential applications in quantum information and quantum communication. In this paper, we propose a computable steering criterion that is applicable to bipartite quantum systems of arbitrary dimensions. The criterion can be used to verify a wide range of steerable states directly from a given density matrix without constructing measurement settings. Compared with the existing steering criteria, it is readily computable and testable in experiment, which can also be used to verify entanglement as all steerable quantum states are entangled.
Inspired by the `computable cross norm or `realignment criterion, we propose a new point of view about the characterization of the states of bipartite quantum systems. We consider a Schmidt decomposition of a bipartite density operator. The correspon
According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is in
A decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic form of the coefficients of a given Bell diagonal states and can be derived via a s
We consider a composite open quantum system consisting of a fast subsystem coupled to a slow one. Using the time-scale separation, we develop an adiabatic elimination technique to derive at any order the reduced model describing the slow subsystem. T
Einstein-Podolsky-Rosen (EPR) steering is the ability that an observer persuades a distant observer to share entanglement by making local measurements. Determining a quantum state is steerable or unsteerable remains an open problem. Here, we derive a