ﻻ يوجد ملخص باللغة العربية
The large separation in the low radial order regime is considered as a highly valuable observable to derive mean densities of $delta$ Scuti stars, due to its independence with rotation. Up to now, theoretical studies of this $Delta u$-${bar rho}$ relation have been limited to 1D non-rotating models, and 2D pseudo-evolutionary models. The present work aims at completing this scenario by investigating quantitatively the impact of rotation in this relation on a large grid of 1D asteroseismic models representative of $delta$ Scuti stars. These include rotation effects on both the stellar evolution and the interaction with pulsation. This allowed us to compute the stellar deformation, get the polar and equatorial radii, and correct the stellar mean densities. We found that the new $Delta u$-${bar rho}$ relation for rotating models is compatible with previous works. We explained the dispersion of the points around the linear fits as caused mainly by the distribution of the stellar mass, and partially by the evolutionary stage. The new fit is found to be close to the previous theoretical studies for lower masses ($1.3-1.81,mathrm{M}_{odot}$). However, the opposite holds for the observations: for the higher masses ($1.81-3,mathrm{M}_{odot}$) the fit is more compatible with the empirical relation. We applied these results to characterise the two well-known $delta$ Scuti stars observed by CoRoT, HD174936 and HD174966, and compared the physical parameters with those of previous works. Inclusion of rotation in the modelling causes a tendency towards greater masses, radii, luminosities and lower density values. Comparison between $Delta u$ and Gaias luminosities also allowed us to constraint the inclination angles and rotational velocities of both stars. The present results pave the way to systematically constrain the angle of inclination of $delta$ Scuti stars
Delta Scuti ($delta$ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modelling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of
Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($Delta u$) and the
High-resolution spectroscopy is a powerful tool to study the dynamical structure of pulsating stars atmosphere. We aim at comparing the line asymmetry and velocity of the two delta Sct stars rho Pup and DX Cet with previous spectroscopic data obtaine
We present statistical characteristics of 1,578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from the works done by Rodr{i}guez and collected the remaining
We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of <~ 1 hour) such as delta Scuti. TAOS is designed for the detection of stellar occultation by