ترغب بنشر مسار تعليمي؟ اضغط هنا

High power, electronically-controlled, source of user-defined vortex and vector light beams based on a few-mode fibre amplifier

254   0   0.0 ( 0 )
 نشر من قبل Di Lin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Orbital angular momentum (OAM) based structured light beams provide an additional degree of freedom for practical applications ranging from optical communication to laser-based material processing. Many techniques exist for generating such beams within laser sources and these primarily rely upon the use of specially designed optical components that limit laser power scaling and ready tunability of the topological charge and polarization of the output OAM beams. Here we show that some of these limitations can be overcome by employing a computer controlled reflective phase-only spatial light modulator (SLM) to adaptively tailor the input (and subsequent output) beam wavefront and polarization in a few-mode fibre amplifier. In this way modal-coupling induced beam distortion within the fibre amplifier can be mitigated and we are able to generate at will any desired supported spatial mode guided in the fibre, including conventional LP modes, scalar OAM modes and cylindrical vector modes, at average powers >10 W and with a peak power of >11 kW. Our results pave the way to the realization of practical high-power structured laser sources with tunable chirality and polarization.



قيم البحث

اقرأ أيضاً

Creating high-quality vector vortex (VV) beams is possible with a myriad of techniques at low power, and while a few studies have produced such beams at high-power, none have considered the impact of amplification on the vector purity. Here we employ novel tools to study the amplification of VV beams, and in particular the purity of such modes. We outline a general toolbox for such investigations and demonstrate its use in the general case of VV beams through a birefringent gain medium. Intriguingly, we show that it is possible to enhance the purity of such beams during amplification, paving the way for high-brightness VV beams, a requirement for their use in high-power applications such as laser materials processing.
71 - Jing Pan 2020
We present a novel scheme of structured light laser with an astigmatic mode converter (AMC) as intracavity element, first enabling the generation of Hermite-Gaussian (HG) modes with fully controlled two-dimensional (2D) indices (m,n) and vortex beams carrying orbital angular momentum (OAM) directly from cavity. The 2D tunability was realized by controlling the off-axis displacements of both pump and intracavity AMC. The output HGm,n beam could be externally converted into OAM beam with 2D tunable radial and azimuthal indices (p,l). With the certain parameter control, vortex beam carrying OAM also could be directly generated from the cavity. Our setup provides a compact and concise structured light source. It has great potential in extending various applications of optical tweezers, communications, and nonlinearity.
Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams ar e usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.
Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwells equations. Inspired by conceptually similar phenomena occurring in the polarizat ion pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fields are measured by considering them as perturbation of unstable optical beams.
Harnessing the spontaneous emission of incoherent quantum emitters is one of the hallmarks of nano-optics. Yet, an enduring challenge remains-making them emit vector beams, which are complex forms of light associated with fruitful developments in flu orescence imaging, optical trapping and high-speed telecommunications. Vector beams are characterized by spatially varying polarization states whose construction requires coherence properties that are typically possessed by lasers-but not by photons produced by spontaneous emission. Here, we show a route to weave the spontaneous emission of an ensemble of colloidal quantum dots into vector beams. To this end, we use holographic nanostructures that impart the necessary spatial coherence, polarization and topological properties to the light originating from the emitters. We focus our demonstration on vector vortex beams, which are chiral vector beams carrying non-zero orbital angular momentum, and argue that our approach can be extended to other forms of vectorial light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا