ﻻ يوجد ملخص باللغة العربية
The proposal made 50 years ago by Schulman (1968), Laidlaw & Morette-DeWitt (1971) and Dowker (1972) to decompose the propagator according to the homotopy classes of paths was a major breakthrough: it showed how Feynman functional integrals opened a direct window on quantum properties of topological origin in the configuration space. This paper casts a critical look at the arguments brought by this series of papers and its numerous followers in an attempt to clarify the reason why the emergence of the unitary linear representation of the first homotopy group is not only sufficient but also necessary.
The essence of the path integral method in quantum physics can be expressed in terms of two relations between unitary propagators, describing perturbations of the underlying system. They inherit the causal structure of the theory and its invariance p
Path integrals constitute powerful representations for both quantum and stochastic dynamics. Yet despite many decades of intensive studies, there is no consensus on how to formulate them for dynamics in curved space, or how to make them covariant wit
The roles of Lie groups in Feynmans path integrals in non-relativistic quantum mechanics are discussed. Dynamical as well as geometrical symmetries are found useful for path integral quantization. Two examples having the symmetry of a non-compact Lie
Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace inte
We discuss the time-continuous path integration in the coherent states basis in a way that is free from inconsistencies. Employing this notion we reproduce known and exact results working directly in the continuum. Such a formalism can set the basis