ترغب بنشر مسار تعليمي؟ اضغط هنا

Reproducible Science with LaTeX

95   0   0.0 ( 0 )
 نشر من قبل HaiYing Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a procedure to execute external source codes from a LaTeX document and include the calculation outputs in the resulting Portable Document Format (pdf) file automatically. It integrates programming tools into the LaTeX writing tool to facilitate the production of reproducible research. In our proposed approach to a LaTeX-based scientific notebook the user can easily invoke any programming language or a command-line program when compiling the LaTeX document, while using their favorite LaTeX editor in the writing process. The required LaTeX setup, a new Python package, and the defined preamble are discussed in detail, and working examples using R, Julia, and MatLab to reproduce existing research are provided to illustrate the proposed procedure. We also demonstrate how to include system setting information in a paper by invoking shell scripts when compiling the document.



قيم البحث

اقرأ أيضاً

Software engineering researchers look for software artifacts to study their characteristics or to evaluate new techniques. In this paper, we introduce DUETS, a new dataset of software libraries and their clients. This dataset can be exploited to gain many different insights, such as API usage, usage inputs, or novel observations about the test suites of clients and libraries. DUETS is meant to support both static and dynamic analysis. This means that the libraries and the clients compile correctly, they are executable and their test suites pass. The dataset is composed of open-source projects that have more than five stars on GitHub. The final dataset contains 395 libraries and 2,874 clients. Additionally, we provide the raw data that we use to create this dataset, such as 34,560 pom.xml files or the complete file list from 34,560 projects. This dataset can be used to study how libraries are used by their clients or as a list of software projects that successfully build. The clients test suite can be used as an additional verification step for code transformation techniques that modify the libraries.
While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. Despite its importance, there has been surprisingly little work on evaluating code generat ion, and it can be difficult to accurately assess code generation performance rigorously. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate satisfactory Python code. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially as models improve. Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.
Background: Assessing and communicating software engineering research can be challenging. Design science is recognized as an appropriate research paradigm for applied research but is seldom referred to in software engineering. Applying the design sci ence lens to software engineering research may improve the assessment and communication of research contributions. Aim: The aim of this study is 1) to understand whether the design science lens helps summarize and assess software engineering research contributions, and 2) to characterize different types of design science contributions in the software engineering literature. Method: In previous research, we developed a visual abstract template, summarizing the core constructs of the design science paradigm. In this study, we use this template in a review of a set of 38 top software engineering publications to extract and analyze their design science contributions. Results: We identified five clusters of papers, classifying them according to their alignment with the design science paradigm. Conclusions: The design science lens helps emphasize the theoretical contribution of research output---in terms of technological rules---and reflect on the practical relevance, novelty, and rigor of the rules proposed by the research.
266 - Daya Guo , Shuo Ren , Shuai Lu 2020
Pre-trained models for programming language have achieved dramatic empirical improvements on a variety of code-related tasks such as code search, code completion, code summarization, etc. However, existing pre-trained models regard a code snippet as a sequence of tokens, while ignoring the inherent structure of code, which provides crucial code semantics and would enhance the code understanding process. We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code. Instead of taking syntactic-level structure of code like abstract syntax tree (AST), we use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of where-the-value-comes-from between variables. Such a semantic-level structure is neat and does not bring an unnecessarily deep hierarchy of AST, the property of which makes the model more efficient. We develop GraphCodeBERT based on Transformer. In addition to using the task of masked language modeling, we introduce two structure-aware pre-training tasks. One is to predict code structure edges, and the other is to align representations between source code and code structure. We implement the model in an efficient way with a graph-guided masked attention function to incorporate the code structure. We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement. Results show that code structure and newly introduced pre-training tasks can improve GraphCodeBERT and achieves state-of-the-art performance on the four downstream tasks. We further show that the model prefers structure-level attentions over token-level attentions in the task of code search.
To accelerate software development, much research has been performed to help people understand and reuse the huge amount of available code resources. Two important tasks have been widely studied: code retrieval, which aims to retrieve code snippets r elevant to a given natural language query from a code base, and code annotation, where the goal is to annotate a code snippet with a natural language description. Despite their advancement in recent years, the two tasks are mostly explored separately. In this work, we investigate a novel perspective of Code annotation for Code retrieval (hence called `CoaCor), where a code annotation model is trained to generate a natural language annotation that can represent the semantic meaning of a given code snippet and can be leveraged by a code retrieval model to better distinguish relevant code snippets from others. To this end, we propose an effective framework based on reinforcement learning, which explicitly encourages the code annotation model to generate annotations that can be used for the retrieval task. Through extensive experiments, we show that code annotations generated by our framework are much more detailed and more useful for code retrieval, and they can further improve the performance of existing code retrieval models significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا