ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia DR 2 data and the evolutionary status of eight high velocity hot post-AGB candidates

62   0   0.0 ( 0 )
 نشر من قبل Wako Aoki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From Gaia DR 2 data of eight high velocity hot post-AGB candidates LS 3593, LSE 148, LS 5107, HD 172324, HD 214539, LS IV -12 111, LS III +52 24, and LS 3099, we found that six of them have accurate parallaxes which made it possible to derive their distances, absolute visual magnitudes (M_V) and luminosity (log L/L_sun). Except LS 5107 all the remaining seven stars have accurate effective temperature (T_eff) in the literature. Some of these stars are metal-poor and some of them do not have circumstellar dust shells. In the past the distances of some stars were estimated to be 6~kpc which we find it to be incorrect. The accurate Gaia DR2 parallaxes show that they are relatively nearby post-AGB stars. When compared with post-AGB evolutionary tracks we find their initial masses in the range of 1M_sun to 2M_sun. We find the luminosity of LSE 148 to be significantly lower than that of post-AGB stars, suggesting that this is a post-horizontal branch star or post-early-AGB star. LS 3593 and LS 5107 are new high velocity hot post-AGB stars from Gaia DR2.

قيم البحث

اقرأ أيضاً

From an analysis of absorption lines in the high resolution spectra we have derived the radial velocities, stellar parameters (Teff, gravity, wind-strength parameter logQ and projected rotational velocity) and abundances (C, N, O, and Si ) of IRAS 17 460-3114, IRAS 18131-3008, IRAS 19336-0400, LSE 45 and LSE 163. Abundances are found to be solar, except for a low Si abundance in IRAS 19336-0400 and a mild CNO pattern in LSE 163, that rotates at an unusual large rotational velocity for its spectral classification. Combining the stellar parameters information with Gaia DR2 data we are able to derive absolute magnitudes, radii and luminosities and clarify the possible post-AGB nature of the objects. IRAS 17460-3114 and IRAS 18131-3008 are found to be massive OB stars, whereas IRAS 19336-0400 is found to be a post-AGB star, already showing nebular lines in the spectrum. However, we could not confirm the nature of LSE 45 and LSE 163 as post-AGB stars, although their parameters are much more inconsistent with those of massive stars. In both cases, we find a discrepancy between the spectroscopic mass and that derived from the predictions of post-AGB evolutionary tracks. In addition, LSE 45 lacks nebular lines, that are present in IRAS 19336-0400 at a similar temperature. In the case of LSE 163 the rotational velocity (259+/-15 km/s) would be extremely large for a star evolving to CSPN. The combination of this rotational velocity, the high Galactic latitude, slightly large radial velocity and mild CNO enhancement suggests a history of binary interaction.
We selected a sample of post-AGB candidates in the Magellanic Clouds on the basis of their near- and mid-infrared colour characteristics. Fifteen of the most optically bright post-AGB candidates were observed with the South African Large Telescope in order to determine their stellar parameters and thus to validate or discriminate their nature as post-AGB objects in the Magellanic Clouds. The spectral types of absorption-line objects were estimated according to the MK classification, and effective temperatures were obtained by means of stellar atmosphere modelling. Emission-line objects were classified on the basis of the fluxes of the emission lines and the presence of the continuum. Out of 15 observed objects, only 4 appear to be genuine post-AGB stars (27%). In the SMC, 1 out of 4 is post-AGB, and in the LMC, 3 out 11 are post-AGB objects. Thus, we can conclude that the selected region in the colour-colour diagram, while selecting the genuine post-AGB objects, overlaps severely with other types of objects, in particular young stellar objects and planetary nebulae. Additional classification criteria are required to distinguish between post-AGB stars and other types of objects. In particular, photometry at far-IR wavelengths would greatly assist in distinguishing young stellar objects from evolved ones. On the other hand, we showed that the low-resolution optical spectra appear to be sufficient to determine whether the candidates are post-AGB objects.
Gaia DR2 provides a unique all-sky catalogue of 550737 variable stars, of which 151761 are long-period variable (LPV) candidates with G variability amplitudes larger than 0.2 mag (5-95% quantile range). About one-fifth of the LPV candidates are Mira candidates, the majority of the rest are semi-regular variable candidates. For each source, G, BP , and RP photometric time-series are published, together with some LPV-specific attributes for the subset of 89617 candidates with periods in G longer than 60 days. We describe this first Gaia catalogue of LPV candidates, and present various validation checks. Various samples of LPVs were used to validate the catalogue: a sample of well-studied very bright LPVs with light curves from the AAVSO that are partly contemporaneous with Gaia light curves, a sample of Gaia LPV candidates with good parallaxes, the ASAS_SN catalogue of LPVs, and the OGLE catalogues of LPVs towards the Magellanic Clouds and the Galactic bulge. The analyses of these samples show a good agreement between Gaia DR2 and literature periods. The same is globally true for bolometric corrections of M-type stars. The main contaminant of our DR2 catalogue comes from young stellar objects (YSOs) in the solar vicinity (within ~1 kpc), although their number in the whole catalogue is only at the percent level. A cautionary note is provided about parallax-dependent LPV attributes published in the catalogue. This first Gaia catalogue of LPVs approximately doubles the number of known LPVs with amplitudes larger than 0.2 mag, despite the conservative candidate selection criteria that prioritise low contamination over high completeness, and despite the limited DR2 time coverage compared to the long periods characteristic of LPVs. It also contains a small set of YSO candidates, which offers the serendipitous opportunity to study these objects at an early stage of the Gaia data releases.
We have performed a study of the characteristics of the circumstellar environment of the binary object HD101584, that provides information on a likely evolutionary scenario. We have obtained and analysed ALMA observations, complemented with observati ons using APEX, of a large number of molecular lines. An analysis of the spectral energy distribution has also been performed. Emissions from 12 molecular species (not counting isotopologues) have been observed, and most of them mapped with angular resolutions in the range 0.1 to 0.6. Four circumstellar components are identified: i) a central compact source of size 0.15, ii) an expanding equatorial density enhancement (a flattened density distribution in the plane of the orbit) of size 3, iii) a bipolar high-velocity outflow (150 km/s), and iv) an hourglass structure. The outflow is directed almost along the line of sight. There is evidence of a second bipolar outflow. The mass of the circumstellar gas is 0.5[D/1 kpc]^2 Msun, about half of it lies in the equatorial density enhancement. The dust mass is 0.01[D/1 kpc]^2 Msun, and a substantial fraction of this is in the form of large-sized, up to 1 mm, grains. The estimated kinetic age of the outflow is 770[D/1 kpc] yr. The kinetic energy and the scalar momentum of the accelerated gas are estimated to be 7x10^(45)[D/1 kpc]^2 erg and 10^(39)[D/1 kpc]^2 g cm/s, respectively. We provide good evidence that the binary system HD101584 is in a post-common-envelope-evolution phase, that ended before a stellar merger. Isotope ratios combined with stellar mass estimates suggest that the primary stars evolution was terminated already on the first red giant branch (RGB). Most of the energy required to drive the outflowing gas was probably released when material fell towards the companion.
We present medium-resolution K-band long-slit spectroscopy of 29 true, likely, possible and candidate Galactic Plane planetary nebulae (PNe) from the UWISH2 survey - many of which have only been recently discovered. These objects are bright in molecu lar hydrogen (H2) emission, and many have bipolar morphologies. Through the detection of the Br{gamma} emission line, which traces ionized hydrogen, we find that the majority of the candidate PNe are indeed likely to be PNe, while 2 of the targets are more likely young stellar objects (YSOs) or pre-planetary nebulae (pPNe). We detect Br{gamma} in 13 objects which have no detection in IPHAS or SHS H{alpha} surveys. This implies they are potential members of the little-known optically-obscured PN population, hidden from wide-field optical surveys. We use the spatial extent of the H2 1-0 S(1) and Br{gamma} lines to estimate the evolutionary stage of our targets, and find that W-BPNe (bipolar PNe with pinched waist morphologies) are likely to be younger objects, while R-BPNe (bipolar PNe with large ring structures) are more evolved. We use line ratios to trace the excitation mechanism of the H2, and find the 1-0 S(1) / 2-1 S(1) and 1-0 S(1) / Br{gamma} ratios are higher for R-BPNe, implying the H2 is thermally excited. However, in W-BPNe, these ratios are lower, and so UV-fluorescence may be contributing to the excitation of H2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا