ترغب بنشر مسار تعليمي؟ اضغط هنا

Segment inequality and almost rigidity structures for integral Ricci curvature

143   0   0.0 ( 0 )
 نشر من قبل Lina Chen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Lina Chen




اسأل ChatGPT حول البحث

We will show the Cheeger-Colding segment inequality for manifolds with integral Ricci curvature bound. By using this segment inequality, the almost rigidity structure results for integral Ricci curvature will be derived by a similar method as in cite{CC1}. And the sharp Holder continuity result of cite{CoN} holds in the limit space of manifolds with integral Ricci curvature bound.



قيم البحث

اقرأ أيضاً

105 - Kai Tang 2021
Motivated by the recent work of Chu-Lee-Tam on the nefness of canonical line bundle for compact K{a}hler manifolds with nonpositive $k$-Ricci curvature, we consider a natural notion of {em almost nonpositive $k$-Ricci curvature}, which is weaker than the existence of a K{a}hler metric with nonpositive $k$-Ricci curvature. When $k=1$, this is just the {em almost nonpositive holomorphic sectional curvature} introduced by Zhang. We firstly give a lower bound for the existence time of the twisted K{a}hler-Ricci flow when there exists a K{a}hler metric with $k$-Ricci curvature bounded from above by a positive constant. As an application, we prove that a compact K{a}hler manifold of almost nonpositive $k$-Ricci curvature must have nef canonical line bundle.
In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
82 - Lina Chen , Guofang Wei 2018
We give several Bishop-Gromov relative volume comparisons with integral Ricci curvature which improve the results in cite{PW1}. Using one of these volume comparisons, we derive an estimate for the volume entropy in terms of integral Ricci curvature w hich substantially improves an earlier estimate in cite{Au2} and give an application on the algebraic entropy of its fundamental group. We also extend the almost minimal volume rigidity of cite{BBCG} to integral Ricci curvature.
We prove that Ricci flows with almost maximal extinction time must be nearly round, provided that they have positive isotropic curvature when crossed with $mathbb{R}^{2}$. As an application, we show that positively curved metrics on $S^{3}$ and $RP^{ 3}$ with almost maximal width must be nearly round.
We generalize most of the known Ricci flow invariant non-negative curvature conditions to less restrictive negative bounds that remain sufficiently controlled for a short time. As an illustration of the contents of the paper, we prove that metrics whose curvature operator has eigenvalues greater than $-1$ can be evolved by the Ricci flow for some uniform time such that the eigenvalues of the curvature operator remain greater than $-C$. Here the time of existence and the constant $C$ only depend on the dimension and the degree of non-collapsedness. We obtain similar generalizations for other invariant curvature conditions, including positive biholomorphic curvature in the Kaehler case. We also get a local version of the main theorem. As an application of our almost preservation results we deduce a variety of gap and smoothing results of independent interest, including a classification for non-collapsed manifolds with almost non-negative curvature operator and a smoothing result for singular spaces coming from sequences of manifolds with lower curvature bounds. We also obtain a short-time existence result for the Ricci flow on open manifolds with almost non-negative curvature (without requiring upper curvature bounds).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا