ﻻ يوجد ملخص باللغة العربية
We investigate the two-dimensional ($2$D) inviscid compressible flow equations in axisymmetric coordinates, constrained by an ideal gas equation of state (EOS). Beginning with the assumption that the $2$D velocity field is space-time separable and linearly variable in each corresponding spatial coordinate, we proceed to derive an infinite family of elliptic or hyperbolic, uniformly expanding or contracting ``gas cloud solutions. Construction of specific example solutions belonging to this family is dependent on the solution of a system of nonlinear, coupled, second-order ordinary differential equations, and the prescription of an additional physical process of interest (e.g., uniform temperature or uniform entropy flow). The physical and computational implications of these solutions as pertaining to quantitative code verification or model qualification studies are discussed in some detail.
Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid, incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of i
Most fluid flow problems that are vital in engineering applications involve at least one of the following features: turbulence, shocks, and/or material interfaces. While seemingly different phenomena, these flows all share continuous generation of hi
In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the f
We find a class of exact solutions to the Lighthill Whitham Richards Payne (LWRP) traffic flow equations. Using two consecutive lagrangian transformations, a linearization is achieved. Next, depending on the initial density, we either apply (again tw
In a recent paper, Liu et al. [``Lift and drag in three-dimensional steady viscous and compressible flow, Phys. Fluids 29, 116105 (2017)] obtained a universal theory for the aerodynamic force on a body in three-dimensional steady flow, effective from