ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Control of a Soft CyberOctopus Arm

145   0   0.0 ( 0 )
 نشر من قبل Udit Halder
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we use the optimal control methodology to control a flexible, elastic Cosserat rod. An inspiration comes from stereotypical movement patterns in octopus arms, which are observed in a variety of manipulation tasks, such as reaching or fetching. To help uncover the mechanisms underlying these observed morphologies, we outline an optimal control-based framework. A single octopus arm is modeled as a Hamiltonian control system, where the continuum mechanics of the arm is modeled after the Cosserat rod theory, and internal, distributed muscle forces and couples are considered as controls. First order necessary optimality conditions are derived for an optimal control problem formulated for this infinite dimensional system. Solutions to this problem are obtained numerically by an iterative forward-backward algorithm. The state and adjoint equations are solved in a dynamic simulation environment, setting the stage for studying a broader class of optimal control problems. Trajectories that minimize control effort are demonstrated and qualitatively compared with observed behaviors.



قيم البحث

اقرأ أيضاً

This paper entails application of the energy shaping methodology to control a flexible, elastic Cosserat rod model. Recent interest in such continuum models stems from applications in soft robotics, and from the growing recognition of the role of mec hanics and embodiment in biological control strategies: octopuses are often regarded as iconic examples of this interplay. Here, the dynamics of the Cosserat rod, modeling a single octopus arm, are treated as a Hamiltonian system and the internal muscle actuators are modeled as distributed forces and couples. The proposed energy shaping control design procedure involves two steps: (1) a potential energy is designed such that its minimizer is the desired equilibrium configuration; (2) an energy shaping control law is implemented to reach the desired equilibrium. By interpreting the controlled Hamiltonian as a Lyapunov function, asymptotic stability of the equilibrium configuration is deduced. The energy shaping control law is shown to require only the deformations of the equilibrium configuration. A forward-backward algorithm is proposed to compute these deformations in an online iterative manner. The overall control design methodology is implemented and demonstrated in a dynamic simulation environment. Results of several bio-inspired numerical experiments involving the control of octopus arms are reported.
This paper presents an application of the energy shaping methodology to control a flexible, elastic Cosserat rod model of a single octopus arm. The novel contributions of this work are two-fold: (i) a control-oriented modeling of the anatomically rea listic internal muscular architecture of an octopus arm; and (ii) the integration of these muscle models into the energy shaping control methodology. The control-oriented modeling takes inspiration in equal parts from theories of nonlinear elasticity and energy shaping control. By introducing a stored energy function for muscles, the difficulties associated with explicitly solving the matching conditions of the energy shaping methodology are avoided. The overall control design problem is posed as a bilevel optimization problem. Its solution is obtained through iterative algorithms. The methodology is numerically implemented and demonstrated in a full-scale dynamic simulation environment Elastica. Two bio-inspired numerical experiments involving the control of octopus arms are reported.
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environm ents, hurricanes, and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging. Therefore, efficient trajectory planning with partial knowledge about the background flow is essential for teams of mobile sensors to adaptively sense and monitor their environments. In this work, we investigate the use of finite-horizon model predictive control (MPC) for the energy-efficient trajectory planning of an active mobile sensor in an unsteady fluid flow field. We uncover connections between the finite-time optimal trajectories and finite-time Lyapunov exponents (FTLE) of the background flow, confirming that energy-efficient trajectories exploit invariant coherent structures in the flow. We demonstrate our findings on the unsteady double gyre vector field, which is a canonical model for chaotic mixing in the ocean. We present an exhaustive search through critical MPC parameters including the prediction horizon, maximum sensor actuation, and relative penalty on the accumulated state error and actuation effort. We find that even relatively short prediction horizons can often yield nearly energy-optimal trajectories. These results are promising for the adaptive planning of energy-efficient trajectories for swarms of mobile sensors in distributed sensing and monitoring.
Optimal control of stochastic nonlinear dynamical systems is a major challenge in the domain of robot learning. Given the intractability of the global control problem, state-of-the-art algorithms focus on approximate sequential optimization technique s, that heavily rely on heuristics for regularization in order to achieve stable convergence. By building upon the duality between inference and control, we develop the view of Optimal Control as Input Estimation, devising a probabilistic stochastic optimal control formulation that iteratively infers the optimal input distributions by minimizing an upper bound of the control cost. Inference is performed through Expectation Maximization and message passing on a probabilistic graphical model of the dynamical system, and time-varying linear Gaussian feedback controllers are extracted from the joint state-action distribution. This perspective incorporates uncertainty quantification, effective initialization through priors, and the principled regularization inherent to the Bayesian treatment. Moreover, it can be shown that for deterministic linearized systems, our framework derives the maximum entropy linear quadratic optimal control law. We provide a complete and detailed derivation of our probabilistic approach and highlight its advantages in comparison to other deterministic and probabilistic solvers.
In recent times, developments in field of communication and robotics has progressed with leaps and bounds. In addition, the blend of both disciplines has contributed heavily in making human life easier and better. So in this work while making use of both the aforementioned technologies, a procedure for design and implementation of a mobile operated mechanical arm is proposed, that is, the proposed arm will be operated via a cellular device that connects with the receiver mounted on the robotic arm. Moreover, over the duration of a call, if any key is pressed from the cellular device than an indicator indistinct to the key pressed is noticed at the receiver side. This tone represents superimposition of two distinct frequencies and referred to as DTMF (dual tone multi-frequency). Further, the mechanical arm is handled via the DTMF tone. Also, the acquired tone at the receiver is taken into a micro-controller (ATMEGA16) using the DTMF decipher module i.e. MT8870. Further, the decipher module unwinds the DTMF signal into its corresponding two bit representation and then the matched number is transmitted to the micro-controller. The micro-controller is programmed to take an action based on the decoded value. Further, the micro-controller forwards control signals to the motor driver unit to move the arm in forward/backward or multi-directional course. Lastly, the mechanical arm is capable of picking and placing objects while being controlled wirelessly over GSM (Global System for Mobile Communications).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا