ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Lensing is Low of BOSS Galaxies

356   0   0.0 ( 0 )
 نشر من قبل Ying Zu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ying Zu




اسأل ChatGPT حول البحث

Recently, Leauthaud et al discovered that the small-scale lensing signal of Baryon Oscillation Spectroscopic Survey (BOSS) galaxies is up to 40% lower than predicted by the standard models of the galaxy-halo connections that reproduced the observed galaxy stellar mass function (SMF) and clustering. We revisit such lensing is low discrepancy by performing a comprehensive Halo Occupation Distribution (HOD) modelling of the SMF, clustering, and lensing of BOSS LOWZ and CMASS samples at Planck cosmology. We allow the selection function of satellite galaxies to vary as a function of stellar mass as well as halo mass. For centrals we assume their selection to depend only on stellar mass, as informed by the directly measured detection fraction of the redMaPPer central galaxies. The best-fitting HOD successfully describes all three observables without over-predicting the small-scale lensing signal. This indicates that the model places BOSS galaxies into dark matter halos of the correct halo masses, thereby eliminating the discrepancy in the one-halo regime where the signal-to-noise of lensing is the highest. Despite the large uncertainties, the observed lensing amplitude above 1 Mpc/h remains inconsistent with the prediction, which is however firmly anchored by the large-scale galaxy bias measured by clustering at Planck cosmology. Therefore, we demonstrate that the lensing is low discrepancy on scales below 1 Mpc/h can be fully resolved by accounting for the halo mass dependence of the selection function. Lensing measurements with improved accuracy is required on large scales to distinguish between deviations from Planck and non-linear effects from galaxy-halo connections.


قيم البحث

اقرأ أيضاً

We present high signal-to-noise galaxy-galaxy lensing measurements of the BOSS CMASS sample using 250 square degrees of weak lensing data from CFHTLenS and CS82. We compare this signal with predictions from mock catalogs trained to match observables including the stellar mass function and the projected and two dimensional clustering of CMASS. We show that the clustering of CMASS, together with standard models of the galaxy-halo connection, robustly predicts a lensing signal that is 20-40% larger than observed. Detailed tests show that our results are robust to a variety of systematic effects. Lowering the value of $S_{rm 8}=sigma_{rm 8} sqrt{Omega_{rm m}/0.3}$ compared to Planck2015 reconciles the lensing with clustering. However, given the scale of our measurement ($r<10$ $h^{-1}$ Mpc), other effects may also be at play and need to be taken into consideration. We explore the impact of baryon physics, assembly bias, massive neutrinos, and modifications to general relativity on $DeltaSigma$ and show that several of these effects may be non-negligible given the precision of our measurement. Disentangling cosmological effects from the details of the galaxy-halo connection, the effects of baryons, and massive neutrinos, is the next challenge facing joint lensing and clustering analyses. This is especially true in the context of large galaxy samples from Baryon Acoustic Oscillation surveys with precise measurements but complex selection functions.
A joint analysis of the clustering of galaxies and their weak gravitational lensing signal is well-suited to simultaneously constrain the galaxy-halo connection as well as the cosmological parameters by breaking the degeneracy between galaxy bias and the amplitude of clustering signal. In a series of two papers, we perform such an analysis at the highest redshift ($zsim0.53$) in the literature using CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Eleventh Data Release (SDSS-III/BOSS DR11) catalog spanning 8300~deg$^2$. In this paper, we present details of the clustering and weak lensing measurements of these galaxies. We define a subsample of 400,916 CMASS galaxies based on their redshifts and stellar mass estimates so that the galaxies constitute an approximately volume-limited and similar population over the redshift range $0.47le zle 0.59$. We obtain a signal-to-noise ratio $S/Nsimeq 56$ for the galaxy clustering measurement. We also explore the redshift and stellar mass dependence of the clustering signal. For the weak lensing measurement, we use existing deeper imaging data from the CFHTLS with publicly available shape and photometric redshift catalogs from CFHTLenS, but only in a 105~deg$^2$ area which overlaps with BOSS. This restricts the lensing measurement to only 5,084 CMASS galaxies. After careful systematic tests, we find a highly significant detection of the CMASS weak lensing signal, with total $S/Nsimeq 26$. These measurements form the basis of the halo occupation distribution and cosmology analysis presented in More et al. (Paper II).
We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical su rveys. The maps are signal dominated on large scales and have fidelity such that their correlation with the cosmic infrared background is clearly visible by eye. We also create lensing maps with thermal Sunyaev-Zeldovich contamination removed using a novel cleaning procedure that only slightly degrades the lensing signal-to-noise ratio. The cross-spectrum between the cleaned lensing map and the BOSS CMASS galaxy sample is detected at $10$-$sigma$ significance, with an amplitude of $A=1.02 pm 0.10$ relative to the Planck best-fit LCDM cosmological model with fiducial linear galaxy bias. Our measurement lays the foundation for lensing cross-correlation science with current ACT data and beyond.
We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample at $zsim0.5$. We introduce a novel method which accounts for the stellar mass incomple teness of CMASS as a function of redshift, and produce CMASS mock catalogs which include selection effects, reproduce the overall SMF, the projected two-point correlation function $w_{rm p}$, the CMASS $dn/dz$, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of age matching and show that these effects are markedly different compared to the ones explored by Hearin et al. (2013) at lower stellar masses. We construct two models, one in which galaxy color is stochastic (AbM model) as well as a model which contains assembly bias effects (AgM model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colors are not a stochastic process in high-mass halos. Our results suggest that the colors of galaxies in high-mass halos are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.
General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys have reached a size where detection of such effects is becoming feasible. In this paper, we report the first detection of the redshift asymmetry from the cross-correlation function of two galaxy populations which is consistent with relativistic effects. The dataset is taken from the Sloan Digital Sky Survey DR12 CMASS galaxy sample, and we detect the asymmetry at the $2.7sigma$ level by applying a shell-averaged estimator to the cross-correlation function. Our measurement dominates at scales around $10$ h$^{-1}$Mpc, larger than those over which the gravitational redshift profile has been recently measured in galaxy clusters, but smaller than scales for which linear perturbation theory is likely to be accurate. The detection significance varies by 0.5$sigma$ with the details of our measurement and tests for systematic effects. We have also devised two null tests to check for various survey systematics and show that both results are consistent with the null hypothesis. We measure the dipole moment of the cross-correlation function, and from this the asymmetry is also detected, at the $2.8 sigma$ level. The amplitude and scale-dependence of the clustering asymmetries are approximately consistent with the expectations of General Relativity and a biased galaxy population, within large uncertainties. We explore theoretical predictions using numerical simulations in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا