ﻻ يوجد ملخص باللغة العربية
We present constraints on the tensor-to-scalar ratio r using Planck data. We use the latest release of Planck maps (PR4), processed with the NPIPE code, which produces calibrated frequency maps in temperature and polarization for all Planck channels from 30 GHz to 857 GHz using the same pipeline. We computed constraints on r using the BB angular power spectrum, and we also discuss constraints coming from the TT spectrum. Given Plancks noise level, the TT spectrum gives constraints on r that are cosmic-variance limited (with $sigma$(r)=0.093), but we show that the marginalized posterior peaks towards negative values of r at about the 1.2$sigma$ level. We derived Planck constraints using the BB power spectrum at both large angular scales (the reionization bump) and intermediate angular scales (the recombination bump) from $ell$=2 to 150, and find a stronger constraint than that from TT, with $sigma$(r)=0.069. The Planck BB spectrum shows no systematic bias, and is compatible with zero, given both the statistical noise and the systematic uncertainties. The likelihood analysis using B modes yields the constraint r<0.158 at 95% confidence using more than 50% of the sky. This upper limit tightens to r<0.069 when Planck EE, BB, and EB power spectra are combined consistently, and it tightens further to r<0.056 when the Planck TT power spectrum is included in the combination. Finally, combining Planck with BICEP2/Keck 2015 data yields an upper limit of r<0.044.
One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio $r$ accurately to constrain inflation models. Due to ignorance about the reionization history $X_{e}(z)$, this analysis is usually don
Cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background (CMB) obtained from the Planck 2015 results are presented. We consider the harmonic attractor model, in wh
Tensor modes in the cosmic microwave background are one of the most robust signatures of inflation. We derive theoretical bounds on the tensor fraction, as a generalization of the well-known Lyth bound. Under reasonable assumptions, the new bounds ar
In a recent work, we had constructed a model consisting of two fields---a canonical scalar field and a non-canonical ghost field---that had sourced a symmetric matter bounce scenario. The model had involved only one parameter, viz. the scale associat
We study the polynomial chaotic inflation model with a single scalar field in a double well quartic potential which has recently been shown to be consistent with Planck data. In particular, we study the effects of lifting the degeneracy between the t