ﻻ يوجد ملخص باللغة العربية
Black widow and redback systems are compact binaries in which a millisecond pulsar heats and may even ablate its low-mass companion by its intense wind of relativistic particles and radiation. In such systems, an intrabinary shock can form as a site of particle acceleration and associated non-thermal emission. We model the X-ray and gamma-ray synchrotron and inverse-Compton spectral components for select spider binaries, including diffusion, convection and radiative energy losses in an axially-symmetric, steady-state approach. Our new multi-zone code simultaneously yields energy-dependent light curves and orbital phase-resolved spectra. Using parameter studies and matching the observed X-ray spectra and light curves, and Fermi Large Area Telescope spectra where available, with a synchrotron component, we can constrain certain model parameters. For PSR J1723--2837 these are notably the magnetic field and bulk flow speed of plasma moving along the shock tangent, the shock acceleration efficiency, and the multiplicity and spectrum of pairs accelerated by the pulsar. This affords a more robust prediction of the expected high-energy and very-high-energy gamma-ray flux. We find that nearby pulsars with hot or flaring companions may be promising targets for the future Cherenkov Telescope Array. Moreover, many spiders are likely to be of significant interest to future MeV-band missions such as AMEGO and e-ASTROGAM.
Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion having matter driven off of its surface by the pulsar wind. X-rays due to an intra-binary shock have been observed from many of these s
The wealth of detections of millisecond pulsars (MSPs) in $gamma$-rays by {em Fermi} has spurred searches for these objects among the several unidentified $gamma$-ray sources. Interesting targets are a sub-class of binary MSPs, dubbed Black Widows (B
Redbacks (RBs) and black widows (BWs) are two peculiar classes of eclipsing millisecond pulsars (MSPs). The accretion-induced collapse (AIC) of an oxygen/neon/magnesium composition white dwarf to a neutron star has been suggested as one possible form
The vast majority of pulsars detected by the Fermi Large Area Telescope (LAT) display exponentially cutoff spectra with cutoffs falling in a narrow band around a few GeV. Early spectral modelling predicted spectral cutoffs at energies of up to 100 Ge
We investigate the electron-positron pair cascade taking place in the magnetosphere of a rapidly rotating black hole. Because of the spacetime frame dragging, the Goldreich-Julian charge density changes sign in the vicinity of the event horizon, whic