ﻻ يوجد ملخص باللغة العربية
Line intensity mapping (LIM) is a promising observational method to probe large-scale fluctuations of line emission from distant galaxies. Data from wide-field LIM observations allow us to study the large-scale structure of the universe as well as galaxy populations and their evolution. A serious problem with LIM is contamination by foreground/background sources and various noise contributions. We develop conditional generative adversarial networks (cGANs) that extract designated signals and information from noisy maps. We train the cGANs using 30,000 mock observation maps with assuming a Gaussian noise matched to the expected noise level of NASAs SPHEREx mission. The trained cGANs successfully reconstruct H{alpha} emission from galaxies at a target redshift from observed, noisy intensity maps. Intensity peaks with heights greater than 3.5 {sigma} noise are located with 60 % precision. The one-point probability distribution and the power spectrum are accurately recovered even in the noise-dominated regime. However, the overall reconstruction performance depends on the pixel size and on the survey volume assumed for the training data. It is necessary to generate training mock data with a sufficiently large volume in order to reconstruct the intensity power spectrum at large angular scales. Our deep-learning approach can be readily applied to observational data with line confusion and with noise.
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour
Line-intensity mapping surveys probe large-scale structure through spatial variations in molecular line emission from a population of unresolved cosmological sources. Future such surveys of carbon monoxide line emission, specifically the CO(1-0) line
Observations of the high-redshift Universe using the 21 cm line of neutral hydrogen and complimentary emission lines from the first galaxies promise to open a new door for our understanding of the epoch of reionization. We present predictions for the
Line-intensity mapping (LIM) provides a promising way to probe cosmology, reionization and galaxy evolution. However, its sensitivity to cosmology and astrophysics at the same time is also a nuisance. Here we develop a comprehensive framework for mod
Deep learning is a powerful analysis technique that has recently been proposed as a method to constrain cosmological parameters from weak lensing mass maps. Due to its ability to learn relevant features from the data, it is able to extract more infor