ﻻ يوجد ملخص باللغة العربية
For three-dimensional metals, Landau levels disperse as a function of the magnetic field and the momentum wavenumber parallel to the field. In this two-dimensional parameter space, it is shown that two conically-dispersing Landau levels can touch at a diabolical point -- a Landau-Dirac point. The conditions giving rise to Landau-Dirac points are shown to be magnetic breakdown (field-induced quantum tunneling) and certain crystallographic spacetime symmetry. Both conditions are realizable in topological nodal-line metals, as we exemplify with CaP$_3$. A Landau-Dirac point reveals itself in anomalous batman-like peaks in the magnetoresistance, as well as in the onset of optical absorption linearly evolving to zero frequency as a function of the field magnitude/orientation.
Recently, it was pointed out that all chiral crystals with spin-orbit coupling (SOC) can be Kramers Weyl semimetals (KWSs) which possess Weyl points pinned at time-reversal invariant momenta. In this work, we show that all achiral non-centrosymmetric
Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Neel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Neel spin-orbi
By means of first-principles calculations and modeling analysis, we have predicted that the traditional 2D-graphene hosts the topological phononic Weyl-like points (PWs) and phononic nodal line (PNL) in its phonon spectrum. The phonon dispersion of g
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly
Previously known three-dimensional Dirac semimetals (DSs) occur in two types -- topological DSs and nonsymmorphic DSs. Here we present a novel three-dimensional DS that exhibits both features of the topological and nonsymmorphic DSs. We introduce a m