ﻻ يوجد ملخص باللغة العربية
In this Letter we study the periodic Anderson model, employing both the slave-boson and the X-boson approaches in the mean field approximation. We investigate the breakdown of the slave-boson at intermediate temperatures when the total occupation number of particles Nt = Nf + Nc is keep constant, where Nf and Nc are respectively the occupation numbers of the localized and conduction electrons, and we show that the high-temperature limit of the slave-boson is Nf = Nc = Nt /2. We also compare the results of the two approaches in the Kondo limit and we show that at low-temperatures the X-boson exhibits a phase transition, from the Kondo heavy fermion (K-HF) regime to a local moment magnetic regime (LMM).
We develop an efficient approach for computing two-particle response functions and interaction vertices for multiorbital strongly correlated systems based on fluctuation around rotationally-invariant slave-boson saddle-point. The method is applied to
Using a rotationally invariant version of the slave-boson approach in spin space we analyze the stability of stripe phases with large unit cells in the two-dimensional Hubbard model. This approach allows one to treat strong electron correlations in t
We present detailed benchmark ground-state calculations of the one- and two-dimensional Hubbard model utilizing the cluster extensions of the rotationally invariant slave-boson (RISB) mean-field theory and the density matrix embedding theory (DMET).
We apply the dynamical large-$N$ Schwinger boson technique as an impurity solver for the dynamical mean-field theory calculations of the Kondo lattice model. Our approach captures the hybridization physics through the DMFT self-consistency that is mi
We derive an exact operatorial reformulation of the rotational invariant slave boson method and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to tre