ﻻ يوجد ملخص باللغة العربية
In the large-$N$ and strong-coupling limit, maximally supersymmetric SU($N$) Yang--Mills theory in $(2 + 1)$ dimensions is conjectured to be dual to the decoupling limit of a stack of $N$ D$2$-branes, which may be described by IIA supergravity.We study this conjecture in the Euclidean setting using nonperturbative lattice gauge theory calculations.Our supersymmetric lattice construction naturally puts the theory on a skewed Euclidean 3-torus. Taking one cycle to have anti-periodic fermion boundary conditions, the large-torus limit is described by certain Euclidean black holes. We compute the bosonic action---the variation of the partition function---and compare our numerical results to the supergravity prediction as the size of the torus is changed, keeping its shape fixed. Our lattice calculations primarily utilize $N = 8$ with extrapolations to the continuum limit, and our results are consistent with the expected gravity behavior in the appropriate large-torus limit.
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi
We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry a
We use fractional and wrapped branes to describe perturbative and non-perturbative properties of N=1 super Yang-Mills living on their world-volume. (Talk given at the 1st Nordstrom Symposium, Helsinki, August 2003.)
We discuss how D=5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2,0) theory in six dimensions. It is known that the compactification of (2,0) theory on a circle leads to D=5 MSYM. A variety of argume