ترغب بنشر مسار تعليمي؟ اضغط هنا

A High-Cadence UV-Optical Telescope Suite On The Lunar South Pole

424   0   0.0 ( 0 )
 نشر من قبل Scott Fleming
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a suite of telescopes be deployed as part of the Artemis III human-crewed expedition to the lunar south pole, able to collect wide-field simultaneous far-ultraviolet (UV), near-UV, and optical band images with a fast cadence (10 seconds) of a single part of the sky for several hours continuously. Wide-field, high-cadence monitoring in the optical regime has provided new scientific breakthroughs in the fields of exoplanets, stellar astrophysics, and astronomical transients. Similar observations cannot be made in the UV from within Earths atmosphere, but are possible from the Moons surface. The proposed observations will enable studies of atmospheric escape from close-in giant exoplanets, exoplanet magnetospheres, the physics of stellar flare formation, the impact of stellar flares on exoplanet habitability, the internal stellar structure of hot, compact stars, and the early-time evolution of supernovae and novae to better understand their progenitors and formation mechanisms.

قيم البحث

اقرأ أيضاً

New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: a n all-sky, arcsecond-resolution, 1000-telescope array which builds a simultaneously high-cadence and deep survey by observing the entire sky all night. As a concrete example, we describe the Argus Array, a 5m-class telescope with an all-sky field of view and the ability to reach extremely high cadences using low-noise CMOS detectors. Each 55 GPix Argus exposure covers 20% of the entire sky to g=19.6 each minute and g=21.9 each hour; a high-speed mode will allow sub-second survey cadences for short times. Deep coadds will reach g=23.6 every five nights over 47% of the sky; a larger-aperture array telescope, with an etendue close to the Rubin Observatory, could reach g=24.3 in five nights. These arrays can build two-color, million-epoch movies of the sky, enabling sensitive and rapid searches for high-speed transients, fast-radio-burst counterparts, gravitational-wave counterparts, exoplanet microlensing events, occultations by distant solar system bodies, and myriad other phenomena. An array of O(1,000) telescopes, however, would be one of the most complex astronomical instruments yet built. Standard arrays with hundreds of tracking mounts entail thousands of moving parts and exposed optics, and maintenance costs would rapidly outpace the mass-produced-hardware cost savings compared to a monolithic large telescope. We discuss how to greatly reduce operations costs by placing all optics in a thermally controlled, sealed dome with a single moving part. Coupled with careful software scope control and use of existing pipelines, we show that the Argus Array could become the deepest and fastest Northern sky survey, with total costs below $20M.
The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important po sition in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.
The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26 degree by 26 degree fields around the southern sky, and targets stars in the range of 8 < V < 10 mag, searching for transits by Hot Jupiters. This paper describes the KELT-South system hardware and software and discusses the quality of the observations. We show that KELT-South is able to achieve the necessary photometric precision to detect transits of Hot Jupiters around solar-type main-sequence stars.
ChangE 4 is the first mission to the far side of the Moon and consists of a lander, a rover, and a relay spacecraft. Lander and rover were launched at 18:23 UTC on December 7, 2018 and landed in the von Karman crater at 02:26 UTC on January 3, 2019. Here we describe the Lunar Lander Neutron & Dosimetry experiment (LND) which is part of the ChangE 4 Lander scientific payload. Its chief scientific goal is to obtain first active dosimetric measurements on the surface of the Moon. LND also provides observations of fast neutrons which are a result of the interaction of high-energy particle radiation with the lunar regolith and of their thermalized counterpart, thermal neutrons, which are a sensitive indicator of subsurface water content.
We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا