ﻻ يوجد ملخص باللغة العربية
We propose a suite of telescopes be deployed as part of the Artemis III human-crewed expedition to the lunar south pole, able to collect wide-field simultaneous far-ultraviolet (UV), near-UV, and optical band images with a fast cadence (10 seconds) of a single part of the sky for several hours continuously. Wide-field, high-cadence monitoring in the optical regime has provided new scientific breakthroughs in the fields of exoplanets, stellar astrophysics, and astronomical transients. Similar observations cannot be made in the UV from within Earths atmosphere, but are possible from the Moons surface. The proposed observations will enable studies of atmospheric escape from close-in giant exoplanets, exoplanet magnetospheres, the physics of stellar flare formation, the impact of stellar flares on exoplanet habitability, the internal stellar structure of hot, compact stars, and the early-time evolution of supernovae and novae to better understand their progenitors and formation mechanisms.
New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: a
The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important po
The Kilodegree Extremely Little Telescope (KELT) project is a survey for new transiting planets around bright stars. KELT-South is a small-aperture, wide-field automated telescope located at Sutherland, South Africa. The telescope surveys a set of 26
ChangE 4 is the first mission to the far side of the Moon and consists of a lander, a rover, and a relay spacecraft. Lander and rover were launched at 18:23 UTC on December 7, 2018 and landed in the von Karman crater at 02:26 UTC on January 3, 2019.
We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of